Trichlorofluoroethene: A reactive tracer for evaluating reductive dechlorination in large-diameter permeable columns

Authors

  • Jennifer A. Field,

  • Ralph L. Reed,

  • Jonathan D. Istok,

  • Lewis Semprini,

  • Peter Bennett,

  • Timothy E. Buscheck


Abstract

Trichlorofluoroethene (TCFE) was used as a reactive tracer to determine the in situ rate of reductive dechlorination in treatment zones impacted by three large-diameter permeable columns (LDPCs) that were installed at a trichloroethene (TCE)–contaminated site. The LDPCs were part of a pilot study to evaluate the effectiveness of hydrogen, lactate, and zero-valent iron for remediating TCE-contaminated ground water. The rate of TCFE reductive dechlorination was determined for each LDPC by means of push-pull tests conducted in each treatment layer. In addition, the distribution of TCFE's lesser chlorinated transformation products was determined. The rates of TCFE reductive dechlorination ranged from 0.05/d to 0.20/d and corresponded to half-lives ranging from 3.5 to 13.9 d. cis-Dichlorofluoroethene was the dominant transformation product detected in all the tests, which is consistent with the findings from pilot tests conducted in the LDPCs prior to the TCFE push-pull tests. cis-Chlorofluoroethene (CFE) and 1,1-CFE also were detected and indicate the potential for vinyl chloride to form under all treatment regimes. Significant production of fluoroethene (FE), the analog of ethene, was observed for only one of the hydrogen treatments. Unambiguous and sensitive detection of the lesser chlorinated products, such as CFE and FE, is possible because TCFE and its transformation products are not found in the background ground water at contaminated sites. Good agreement between the rates and transformation product profiles for TCFE and TCE in both field and laboratory experiments indicates the suitability of TCFE as a surrogate for predicting the rates of TCE reductive dechlorination.

Ancillary