• 1
    Rall TW, Sutherland EW. Formation of a cyclic adenine ribonucleotide by tissue particles. Biol Chem 1958; 232: 106576.
  • 2
    Hurley JH. The adenylyl and guanylyl cyclase superfamily. Curr Opin Struct Biol 1998; 8: 7707.
  • 3
    Waldman SA, Murad F. Cyclic GMP synthesis and function. Pharmacol Rev 1987; 39: 16396.
  • 4
    Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1999; 1411: 33450.
  • 5
    Wedel BJ, Garbers DL. The guanylate cyclase family at Y2K. Annu Rev Physiol 2001; 63: 21533.
  • 6
    Liu Y, Ruoho AE, Rao VD, Hurley JH. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci USA 1997; 94: 134149.
  • 7
    Garbers DL, Lowe DG. Guanylyl cyclase receptors. J Biol Chem 1994; 269: 307414.
  • 8
    Barr CS, Rhodes P, Struthers AD. C-type natriuretic peptide. Peptides 1996; 17: 124351.
  • 9
    Forte LR, London RM, Freeman RH, Krause WJ. Guanylin peptides: renal actions mediated by cyclic GMP. Am J Physiol 2000; 278: F180F191.
  • 10
    Moreland RB, Hsieh G, Nakane M, Brioni J. The biochemical and neurologic basis for the treatment of male erectile dysfunction. J Pharmacol Exp Ther 2001; 296: 22534.
  • 11
    Cellek S, Moncada S. Nitrergic control of peripheral sympa thetic responses in the human corpus cavernosum: a comparison with other species. Proc Natl Acad Sci USA 1997; 94: 822631.
  • 12
    Andersson KE. Pharmacology of penile erection. Pharmacol Rev 2001; 53: 41750.
  • 13
    Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, et al. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation, are regulated by cAMP-dependent pathway. Development 1995; 121: 113950.
  • 14
    Leclerc P, De Lamirande E, Gagnon C. Cyclic adenosine 39, 59 monophosphate- dependent regulation of protein tyrosine phos-phorylation in relation to human sperm capacitation and motility. Biol Reprod 1996; 55: 68492.
  • 15
    Tash JS. Role of cAMP, calcium and protein phosphorylation in sperm motility. In: GagnonC, editor. Controls of Sperm Motility: Biological and Clinical Aspects. Boca Raton , FL : CRC Press 1990. p 22941.
  • 16
    Zhung ZH, Zheng RL. Possible role of nitric oxide on fertile and asthenozoospermic infertile human sperm functions. Free Radical Res 1996; 25: 34754.
  • 17
    Lewis SE, Donnelly BT, Sterling ES, Kennedy MS. Nitric oxide synthase and nitric production in human spermatozoa: evidence that endogenous nitric oxide is beneficial in sperm motility. Mol Hum Reprod 1996; 2: 8738.
  • 18
    Rees JM, Ford WC, Hull MG. Effect of caffeine and of pentoxifylline on the motility and metabolism of human spermatozoa. Reprod Fertil 1990; 90: 14756.
  • 19
    Yanagimachi R. Mammalian fertilization. In: The Physiology of Reproduction, 2nd edn. KnobilE, NeillJD, editors. Raven Press, New York . 1994; p 189317.
  • 20
    MacLeod JM, Paupard MC, Orr AG. Flagellar-associated cAMP-dependent protein kinases in mammalian sperm. In: BaccettiB, eidtor. Comparative Spermatology 20 Years After, Vol 75. Raven Press, New York . 1991; p 397401.
  • 21
    De Jonge CJ, Han HL, Lawrie H, Mack SR, Zaneveld LJ. Modulation of the human sperm acrosome reaction by effectors of the adenylate cyclase/cyclic AMP second-messenger pathway. J Exp Zool 1991; 258: 11325.
  • 22
    Fisch JD, Behr B, Conti M. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. Hum Reprod 1998; 13: 124854.
  • 23
    Tesarik J, Mendoza C, Carreras A. Effect of phosphodiesterase inhibitors, caffeine and pentoxifylline, on spontaneous and stimulus-induced acrosome reactions in human sperm. Fertil Steril 1992; 58: 18590.
  • 24
    Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6: 305164.
  • 25
    Herrero MB, Perez-Martinez S, Viggiano JM, Polak JM, Gimeno MF. Localization by indirect immunofluorescence of nitric oxide synthase in mouse and human spermatozoa. Reprod Fertil Dev 1996; 8: 9314.
  • 26
    Donnelly ET, Lewis SE, Thompson W, Chakravarthy U. Sperm nitric oxide and motility: the effects of nitric oxide synthase stimulation and inhibition. Mol Hum Reprod 1997; 3: 75562.
  • 27
    O'Bryan MK, Zini A, Cheng CY, Schlegel PN. Human sperm endothelial nitric oxide synthase expression: correlation with sperm motility. Fertil Steril 1998; 70: 11437.
  • 28
    Revelli A, Soldati G, Costamagna C, Pellerey O, Aldieri E, Massobrio M, et al. Follicular fluid proteins stimulate nitric oxide (NO) synthesis in human sperm: a possible role for NO in acrosomal reaction. J Cell Physiol 1999; 178: 8592.
  • 29
    Hellstrom W, Bell M, Wang R, Sikka S. Effect of sodium nitro-prusside on sperm motility, viability and lipid peroxidation. Fertil Steril 1994; 61: 111722.
  • 30
    Rosselli M, Dubey RK, Imthurn B, Macas E, Keller PJ. Effects of nitric oxide on human spermatozoa: evidence that nitric oxide decreases sperm motility and induces sperm toxicity. Hum Reprod 1995; 10: 178690.
  • 31
    Revelli A, Ghigo D, Moffa F, Massobrio M, Tur-Kaspa I. Guanylate cyclase activity and sperm function. Endocr Rev 2002; 23: 48494.
  • 32
    Sofikitis N, Miyagawa I, Toda T, Terakawa N. Effects of an inhibitor of adenylate cyclase on acrosome reaction induced by protein kinase C activators. Arch Androl 1993; 30: 8792.
  • 33
    Andrade JR, Traboulsi A, Hussain A, Dubin NH. In vitro effects of sildenafil and phentolamine, drugs used for erectile dysfunction, on human sperm motility. Am J Obstet Gynecol 2000; 182: 10935.
  • 34
    Nobunaga T, Tokugawa Y, Hashimoto K, Kubota Y, Sawai K, Kimura T, et al. Elevated nitric oxide concentration in the seminal plasma of infertile males: nitric oxide inhibits sperm motility. Am J Reprod Immunol 1996; 36: 1937.
  • 35
    Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev 1995; 75: 72548.
  • 36
    Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J Biol Chem 1995; 270: 309891000.
  • 37
    Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, et al. Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 2003; 64: 53346.
  • 38
    Zhao AZ, Yan C, Sonnenburg WK, Beavo JA. Recent advances in the study of Ca2+/CaM-activated phosphodiesterases: expression and physiological functions. Signal Transduct Health Dis 1997; 31: 23751.
  • 39
    Florio VA, Sonnenburg WK, Johnson R, Kwak KS, Jensen GS, Walsh KA, et al. Phosphorylation of the 61-kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin. Biochemistry 1994; 33: 894854.
  • 40
    Hashimoto Y, Sharma RK, Soderling TR. Regulation of Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 1989; 264: 108847.
  • 41
    Kakkar R, Raju RVS, Sharma RK. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell Mol Life Sci 1999; 55: 116486.
  • 42
    Manganiello VC, Tanaka T Murashima S.. Cyclic GMPstimulated cyclic nucleotide phosphodiesterases. In: BeavoJ, HouslayMD, editors. Isoenzymes of Cyclic Nucleotide Phosphodiesterases. John Wiley and Sons, New York , 1990; p 6185.
  • 43
    Yang Q, Paskind M, Bolger G, Thompson WJ, Repaske DR, Cutler LS, et al. A novel cyclic GMP stimulated phosphodi-esterase from rat brain. Biochem Biophys Res Commun 1994; 205: 18508.
  • 44
    Guy J, Rosman A, Timothy J, Martins A, William K, Sonnenburg B, et al. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′, 5′-cyclic nucleotide phosphodiesterase 1. Gene 1997; 191: 8995.
  • 45
    Repaske DR, Corbin JG, Conti M, Goy MF. A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience 1993; 56: 67386.
  • 46
    Dickinson NT, Jang EK, Haslam RJ. Activation of cGMP-stimulated phosphodiesterase by nitroprusside limits cAMP accumulation in human platelets: effects on platelet aggregation. Biochem J 1997; 323: 3717.
  • 47
    Mery PF, Pavoine C, Pecker F, Fischmeister R. Erythro-9-(2-hydroxy-3-nonyl) adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol 1995; 48: 12130.
  • 48
    Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M. Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 2005; 68: 177581.
  • 49
    Podzuweit T, Nennstiel P, Muller A. Isozyme selective inhibition of cGMP-stimulated cyclic nucleotide phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell Signal 1995; 7: 7338.
  • 50
    Tang KM, Jang EK, Haslam RJ. Expression and mutagenesis of the catalytic domain of cGMP-inhibited phosphodiesterase (PDE3) cloned from human platelets. Biochem J 1997; 323: 21724.
  • 51
    Reinhardt RR, Chin E, Zhou J, Taira M, Murata T, Manganiello VC, et al. Distinctive anatomical patterns of gene-expression for cGMP-inhibited cyclic-nucleotide phosphodiesterases. J Clin Investig 1995; 95: 152838.
  • 52
    Liu H, Maurice DH. Expression of cyclic GMP-inhibited phos-phodiesterases 3A and 3B (PDE3A and PDE3B) in rat tissues: differential subcellular localization and regulated expression by cyclic AMP. Br J Pharmacol 1998; 125: 150110.
  • 53
    Manganiello VC, Degerman E. Cyclic nucleotide phosphodiesterases: diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents. Thromb Haemost 1999; 82: 40711.
  • 54
    Beavo JA, Reifsnyder DH. Primary sequence of cyclic-nucle-otide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 1990; 11: 1505.
  • 55
    Shakur Y, Holst LS, Landstrom TR, Movsesian M, Degerman E, Manganiello V. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog Nucleic Acid Res Mol Biol 2001; 66: 24177.
  • 56
    Swinnen JV, Joseph DR, Conti M. Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A 1989; 86: 53259.
  • 57
    Bolger G, Michaeli T, Martins T, St. John T, Steiner B, Rodgers L, et al. Mol Cell Biol 1993; 13: 655871.
  • 58
    Houslay MD. PDE4 cAMP-specific phosphodiesterases. Prog Nucleic Acid Res Mol Biol 2001; 69: 249315.
  • 59
    Houslay MD, Adams DR. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem J 2003; 370: 118.
  • 60
    Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C. Cyclic AMPspecific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003; 278: 54936.
  • 61
    Souness JE, Aldous D, Sargent C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology 2000; 47: 12762.
  • 62
    Zhang HT, Crissman AM, Dorairaj NR, Chandler LJ, O'Donnell JM. Inhibition of cAMP phosphodiesterase (PDE4) reverses memory deficits associated with NMDA receptor antagonism. Neuropsychopharmacology 2000; 23, 198204.
  • 63
    Zhang HT, O'Donnell JM. Effects of rolipram on scopolamine induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology (Berlin) 2000; 150: 3116.
  • 64
    O'Donnell JM. Antidepressant-like effects of rolipram and other inhibitors of cyclic adenosine monophosphate phosphodiesterase on behaviour maintained by differential reinforcement of low response rate. J Pharmacol Exp Ther 1993; 264: 116878.
  • 65
    Lin CS, Lau A, Tu R, Lue TF. Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum. Biochem Biophys Res Commun 2000; 268: 62835.
  • 66
    McAllister-Lucas LM, Haik TL, Colbran JL, Sonnenburg WK, Seger D, Turko IV, et al. An essential aspartic acid at each of two allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase. J Biol Chem 1995; 270: 306719.
  • 67
    Lin C, Chow S, Lau A, Tu R, Lue TF. Regulation of human PDE5A2 intronic promoter by cAMP and cGMP: identification of a critical Sp1-binding site. Biophys Res Commun 2001; 280: 6939.
  • 68
    Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA. PDE5 Is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 2003; 22: 46978.
  • 69
    Francis SH, Turko IV, Corbin JD. Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol 2001; 65: 152.
  • 70
    Essayan DM. Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 2001; 108: 67180.
  • 71
    Burns ME, Baylor DA. Activation, deactivation and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 2001; 24: 779805.
  • 72
    Koutalos Y, Nakatani K, Yau KW. The cGMP-phosphodiesterase and its contribution to sensitivity regulation in retinal rods. J Gen Physiol 1995; 106: 891921.
  • 73
    Nakatani K, Chen C, Yau KW, Koutalos Y. Calcium and phototransduction. Adv Exp Med Biol 2002; 514: 120.
  • 74
    Castro Á, Jerez MJ, Gil C, Martinez A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Med Res Rev 2005; 25: 22944.
  • 75
    Daugan Á, Grondin P, Ruault C, Le Monnier de Gouville A, Coste H, Linget JM. The discovery of tadalafil: a novel and highly selective PDE5 inhibitor. 2: 2, 3, 6, 7, 12, 12a-hexahydropyrazino [1′,2′:1,6]pyrido[3,4-b]indole-1,4-dione analogues. J Med Chem 2003; 46: 453342.
  • 76
    De Tejada SI, Angulo J, Cuevas P, Fernandez A, Moncada I, Allona A, et al. The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor vardenafil. Int J Impot Res 2001; 13: 28290.
  • 77
    Bloom TJ, Beavo JA. Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. PNAS 1996; 93: 1418892.
  • 78
    Miro X, Perez-Torres S, Palacios JM, Puigdomenech P, Mengod G. Differential distribution of cAMP specific phosphodiesterase 7A mRNA in rat brain and peripheral organs. Synapse 2001; 40: 20114.
  • 79
    Glavas NA, Ostenson C, Scaefer JB, Vasta V, Beavo JA. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. PNAS 2001; 98: 631924.
  • 80
    Sasaki T, Kotera J, Yuasa K, Omori K. Identification of human PDE7B, a cAMP-specific phosphodiesterase. Biochem Biophys Res Commun 2000; 271: 57583.
  • 81
    Gardner C, Robas N, Cawkill D, Fidock M. Cloning and characterization of the human and mouse PDE7B, a novel cAMP-specific cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 2000; 272: 18692.
  • 82
    Smith SJ, Brookes-Fazakerley S, Donnelly LE, Barnes PJ, Barnette MS, Giembycz MA. Ubiquitous expression of phosphodiesterase 7A in human proinflammatory and immune cells. Am J Physiol Lung Cell Mol Physiol 2003; 284: L279L289.
  • 83
    Nakata A, Ogawa K, Sasaki T, Koyama N, Wada K, Kotera J, et al. Potential role of phosphodiesterase 7 in human T cell function: comparative effects of two phosphodiesterase inhibitors. Clin Exp Immunol 2002; 128: 4606.
  • 84
    Warner-Lambert Company. New Thiadiazoles and their use as phosphodiesterase 7 inhibitors. 2000; EP 1 193 261 A1.
  • 85
    Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB. Isolation and characterization of PDE8A, a novel human cAMP-specific phosphodiesterase. Biochem Biophys Res Commun 1998; 246: 5707.
  • 86
    Soderling SH, Bayuga SJ, Beavo JA. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci USA 1998; 95: 89916.
  • 87
    Wang P, Wu P, Egan RW, Billah MM. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. Gene 2001; 280: 18394.
  • 88
    Guipponi M, Scott HS, Kudoh J, Kawasaki K, Shibuya K, Shintani A, et al. Identification and characterization of a novel cyclic nucleotide phosphodiesterase gene (PDE9A) that maps to 21q22.3: alternative splicing of mRNA transcripts, genomic structure and sequence. Hum Genet 1998; 103: 38692.
  • 89
    Bonné-Tamir B, Destefano AL, Briggs CE, Adair R, Franklyn B, Weiss S, et al. Linkage of congenital recessive deafness (gene DFNB10) to chromosome 21q22.3. Am J Hum Genet 1996; 58: 12549.
  • 90
    Veske A, Oehlmann R, Younus F, Mohyuddin A, Müller-Myhsok B, Mehdi SQ, et al. Autosomal recessive non-syndromic deafness locus (DFNB8) maps on chromosome 21q22 in a large consan guineous kindred from Pakistan. Hum Mol Genet 1996; 5: 1658.
  • 91
    Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L, et al. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Nat Genet 1994; 8: 2916.
  • 92
    Detera-Wadleigh SD, Badner JA, Goldin LR, Berrettini WH, Sanders AR, Rollins DY, et al. Affected-sib-pair analyses reveal support of prior evidence for a susceptibility locus for bipolar disorder, on 21q. Am J Hum Genet 1996; 58: 127985.
  • 93
    Gurling H. Chromosome 21 workshop. Psychiatr Genet 1998; 8: 10913.
  • 94
    Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB. Isolation and Characterization of PDE9A, a Novel Human cGMP-specific Phosphodiesterase. J Biol Chem 1998; 273: 1555964.
  • 95
    Phillip J, Mitchell PJ, Malipiero U, Fontana A. Cell type specific regulation of expression of transcription factor AP-2 in neuro-ectodermal cells. Dev Biol 1994; 165: 60214.
  • 96
    Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, et al. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Nat Acad Sci 2000; 97: 37027.
  • 97
    Beavo JA, Conti M, Heaslip RJ. Multiple cyclic nucleotide phosphodiesterases. Molec Pharm 1994; 46: 399405.
  • 98
    Notsu T, Ohzawa N, Nakai Y. Therapeutic agent for erection failure. Patent 1998; WO9853819.
  • 99
    Iwasaki T, Kondo K, Kuroda T, Moritani Y, Yamagata S, Sugiura M, et al. Novel selective PDE IV inhibitors as antiasthmatic agents. Synthesis and biological activities of a series of 1-aryl-2, 3-bis(hydroxymethyl) naphthalene lignans. J Med Chem 1996; 39: 2696704.
  • 100
    Ukita T, Sugahara M, Terakawa Y, Kuroda T, Wada K, Nakata A, et al. Novel, potent, and selective phosphodiesterase-4 inhibitors as antiasthmatic agents: synthesis and biological activities of a series of 1-pyridylnaphthalene derivatives. J Med Chem 1999; 42: 108899.
  • 101
    Ukita T, Nakamura Y, Kubo A, Yamamoto Y, Takahashi M, Kotera J, et al. 1-Arylnaphthalene lignan: a novel scaffold for type 5 phosphodiesterase inhibitor. J Med Chem 1999; 42: 1293305.
  • 102
    Natsugari H, Ikeura Y, Kiyota Y, Ishichi Y, Ishimaru T, Saga O, et al. Novel, potent, and orally active substance P antagonists: synthesis and antagonist activity of N-benzylcarboxamide derivatives of pyrido[3,4-b]pyridine. J Med Chem 1995; 38: 310620.
  • 103
    Kulkarni SU, Usgaonkar RN. Isocoumarins. Part-XXIII. Synthesis of Some 6,7-Dimethoxy-3-phenylisocoumarins. J Indian Chem Soc 1991; 68: 5256.
  • 104
    Marmor MF, Kessler R. Sildenafil (Viagra) and ophthalmology. Surv Ophthalmol 1999; 44: 15362.
  • 105
    Thompson WJ, Terasaki W, Epstein PM, Strada SJ. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res 1979; 10: 6992.
  • 106
    Whalin ME, Scammell JG, Strada SJ, Thompson WJ. Phosphodiesterase II, the cGMP-activatable cyclic nucleotide phosphodiesterase, regulates cyclic AMP metabolism in PC12 cells. Mol Pharmacol 1991; 39: 7117.
  • 107
    Ruppert D, Weithmann KU. HL 725, an extremely potent inhibitor of platelet phosphodiesterase and induced platelet aggregation in vitro. Life Sci 1982; 31: 203743.
  • 108
    Haynes J Jr, Kithas PA, Taylor AE, Strada SJ. Selective inhibition of cGMP-inhibitable cAMP Phosphodiesterase decreases pulmonary vasoreactivity. Am J Physiol 1991; 261 (2 Pt 2): H48792.
  • 109
    Middendorff R, Müller D, Wichers S, Holstein AF, Davidoff MS. Evidence for production and functional activity of nitric oxide (NO) in seminiferous tubules and blood vessels of die human testis. J Clin Endocrinol Metab 1997; 82: 415461.
  • 110
    Davidoff MS, Middendorff R. The nitric oxide system in the urogenital tract. In: SteinbuschHW, De VenteJ, VincentSR, BjörklundA, HökfeltT, editors. Functional neuroanatomy of the nitric oxide system. Handbook of Chemical Neuroanatomy. Elsevier : Amsterdam. 2000; p 267314.
  • 111
    Middendorff R, Müller D, Mewe M, Mukhopadhyay AK, Holstein AF, Davidoff MS. The tunica albuginea of the human testis is characterized by complex contraction and relaxation activities regulated by cGMP. J Clin Endocrinol Metab 2002; 87: 348699.
  • 112
    Mewe M, Bauer CK, Müller D, Middendorff R. Regulation of spontaneous contractile activity in the bovine epididymal duct by cyclic GMP-dependent pathways. Endocrinology 2006; 147: 205162.
  • 113
    Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL. Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sei USA 2004; 101: 173005.
  • 114
    Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 2006; 58: 488520.
  • 115
    Fujishige K, Kotera J, Michibata H, Yuasa K, Takebayashi S, Okumura K, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 1999; 274: 1843845.
  • 116
    Scipioni A, Stefanini S, Santone R, Giorgi M. Immunohistochemical localisation of PDE5 in Leydig and myoid cells of prepuberal and adult rat testis. Histochem Cell Biol 2005; 124: 4017.
  • 117
    Francis SH. Phosphodiesterase 11 (PDE11): is it a player in human testicular function? Int J Impot Res 2005; 17: 4678.
  • 118
    Gray JP, Hardman JG, Hammer JL, Hoos RT, Sutherland EW. Adenyl cyclase, phosphodiesterase and cyclic AMP of human sperm and seminal plasma. Fed Proc 1971; 30: 12679.
  • 119
    Lefièvre L, Lamirande E, Gagnon C. Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol Reprod 2002; 67: 42330.
  • 120
    Cheng CY, Boettcher B. Partial characterization of human spermatozoal phosphodiesterase and adenylate cyclase and the effect of steroids on their activities. Int J Androl 1982; 5: 25366.
  • 121
    Richter W, Dettmer D, Glander HJ. Detection of mRNA transcripts of cyclic nucleotide phosphodiesterase subtypes in ejaculated human spermatozoa. Mol Hum Reprod 1999; 5: 7326.
  • 122
    Takase Y, Saeki T, Watanabe N, Adachi H, Souda S, Saito I. Cyclic GMP phosphodiesterase inhibitors. 2. Requirement of 6-substitution of quinazoline derivatives for potent and selective inhibitory activity. J Med Chem 1994; 37: 210411.
  • 123
    Takase Y, Saeki T, Fujimoto M, Saito I. Cyclic GMP phosphodiesterase inhibitors. 1. The discovery of a novel potent inhibitor, 4-((3,4-(methylenedioxy)benzyl)amino)-6,7,8-trimethoxyquinazoline. J Med Chem 1993; 36: 376570.
  • 124
    Lee SJ, Konishi Y, Yu DT, Miskowski TA, Riviello CM, Macina OT, et al. Discovery of potent cyclic GMP phosphodiesterase inhibitors. 2-Pyridyl- and 2-imidazolylquinazolines possessing cyclic GMP phosphodiesterase and thromboxane synthesis inhibitory activities. J Med Chem 1995; 38: 354757.
  • 125
    Watanabe N, Adachi H, Takase Y, Ozaki H, Matsukura M, Miyazaki K, et al. 4-(3-Chloro-4-methoxybenzyl) aminophthalazines: synthesis and inhibitory activity toward phosphodiesterase 5. J Med Chem 2000; 43: 25239.
  • 126
    Watanabe N, Kabasawa Y, Takase Y, Matsukura M, Miyazaki K, Ishihara H, et al. 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phospho-diesterase 5. J Med Chem 1998; 41: 3367572.
  • 127
    Daugan A. Tetracyclic derivatives, process of preparation and use. Patent 1995; WO9519978.
  • 128
    Oku T, Sawada K, Kuroda A, Ohne K, Nomoto A, Hosogi N, et al. Indole derivatives as cGMP-PDE inhibitors. Patent 1996; WO9632379.
  • 129
    Kloner RA, Brown M, Prisant LM, Collins M. Effect of sildenafil in patients with erectile dysfunction taking antihypertensive therapy. Am J Hypertens 2001; 14: 703.
  • 130
    Derry FA, Dinsmore WW, Fraser M, Gardner BP, Glass CA, Maytom MC, et al. Efficacy and safety of oral sildenafil (Viagra®) in men with erectile dysfunction caused by spinal cord injury. Neurology 1998; 51: 162933.
  • 131
    McMahon CG, Samali R, Johnson H. Efficacy, safety, and patient acceptance of sildenafil as treatment for erectile dysfunction. J Urol 2000; 164: 11926.
  • 132
    Marks LS, Duda C, Dorey FJ. Treatment of erectile dysfunction with sildenafil. Urology 1999; 53: 1924.
  • 133
    Moreira SG Jr, Brannigan RE, Spitz A, Orejuela FJ, Lipshultz LI, Kim ED. Side-effect profile of sildenafil citrate (Viagra) in clinical practice. Urology 2000; 56: 4746.
  • 134
    Jarow JP, Burnett AL, Geringer AM. Clinical efficacy of sildenafil citrate based on etiology and response to prior treatment. J Urol 1999; 162: 7225.
  • 135
    Morales A, Gingell C, Collins M, Wicker PA, Osterloh IH. Clinical safety of oral sildenafil citrate (Viagra™) in the treatment of erectile dysfunction. Int J Impot Res 1998; 10: 6974.
  • 136
    Montorsi F, Hellstrom WJ, Valiquette L, Bastuba M, Collins O, Taylor T, et al. Vardenafil provides reliable efficacy over time in men with erectile dysfunction. Urology 2004; 64: 118795.
  • 137
    Hellstrom WJ, Gittelman M, Karlin G, Segerson T, Thibonnier M, Taylor T, et al. Vardenafil for treatment of men with erectile dysfunction: efficacy and safety in a randomized, double-blind, placebo-controlled trial. J Androl 2002; 23: 76371.
  • 138
    Porst H, Young JM, Schmidt AC, Buvat J, International Vardenafil Study Group. The efficacy and tolerability of vardenafil, a new oral selective phosphodiesterase type 5 inhibitor in patients with erectile dysfunction: the first at home clinical trial. Int J Impot Res 2001; 13: 1929.
  • 139
    Hellstrom WJ, Gittelman M, Karlin G, Segerson T, Thibonnier M, Taylor T, et al. Sustained efficacy and tolerability of vardenafil, a highly potent selective phosphodiesterase type 5 inhibitor, in men with erectile dysfunction: results of a randomized, double-blind, 26-week placebo-controlled pivotal trial. Urology 2003; 61 (Suppl 4A): 814.
  • 140
    Althof SE. Quality of life and erectile dysfunction. Urology 2002; 59: 80310.
  • 141
    Fugl-Meyer AR, Lodnert G, Branholm IB, Fugl-Meyer KS. On life satisfaction in male erectile dysfunction. Int J Impot Res 1997; 9: 1418.
  • 142
    Hellstrom WJ, Overstreet JW, Yu A, Shen W, Beasley CM, Watkins VS. Tadalafil has no effect on spermatogenesis or reproductive hormones. J Urol 2003; 70: 88791.
  • 143
    Montorsi F, Verheyden B, Junemann KP, Moncado I, Valiquette L, Denne J, et al. Long-term safety experience with tadalafil. J Urol 2003; 169: 244.
  • 144
    Weeks JL, Zoraghi R, Beasley A, Sekhar KR, Francis SH, Corbin JD. High biochemical selectivity of tadalafil, sildenafil and vardenafil for human phosphodiesterase 5A1 (PDE5) over PDE11A4 suggests the absence of PDE11A4 cross-reaction in patients. Int J Impot Res 2005; 17: 59.
  • 145
    Reffelmann T, Kloner RA. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation 2003; 108: 23944.
  • 146
    Porst H. IC351 (tadalafil, Cialis): update on clinical experience. Int J Impot Res 2002; 14 (Suppl 1): S5764.
  • 147
    Loughney K, Taylor J, Florio VA. 30,50-cyclic nucleotide phosphodiesterase 11A: localization in human tissues. Int J Impot Res 2005; 17: 3205.
  • 148
    Yuasa K, Kanoh Y, Okumura K, Omori K. Genomic organization of the human phosphodiesterase PDE11A gene: evolutionary relatedness with other PDEs containing GAF domains. Eur J Biochem 2001; 268: 16878.
  • 149
    Baxendale RW, Burslem F, Phillips SC. Phosphodiesterase type 11 (PDE11) cellular localization: progress towards defining a physiological role in testis and/or reproduction. J Urol 2001; 165 (Suppl): Abstract 1395.
  • 150
    Ueckert S, Hedlund P, Oelke M, Steif C. Immunohistochemical presence of phosphodiesterase (PDE) 11A in the human prostate [abstract]. Eur Urol 2004; 3 (Suppl): 18.
  • 151
    Padma-Nathan H, Rosen RC, Shobsigh R, Watkins VS, Pullman B. Cialis (IC351) provides prompt response and extended responsiveness for the treatment of erectile dysfunction. J Urol 2001; 165 (Suppl): 224.
  • 152
    Kloner RA, Mitchell M, Emmick JT. Cardiovascular effects of tadalafil in patients on common antihypertensive therapies. Am J Cardiol 2003; 92 (Suppl): 47M57M.
  • 153
    Sikka S, Hellstrom W. The application of pentoxifylline in the stimulation of sperm motion in men undergoing electroejaculation. J Androl 1991; 12: 16570.
  • 154
    Tesarik J, Thebault A, Testart J. Effect of pentoxifylline on sperm movement characteristics in normozoospermic and asthenozoospermic specimens. Hum Reprod 1992; 7: 125763.
  • 155
    Tournaye H, Devroey P, Camus M, Van der Linden M, Janssens R, Van Steirteghem A. Use of pentoxifylline in assisted reproductive technology. Hum Reprod 1995; 10: 729.
  • 156
    Schill WB, Pritsch W, Preissler G. Effect of caffeine and kallikrein on cryo-preserved human spermatozoa. Int J Fertil 1979; 24: 2732.
  • 157
    Schill WB. Caffeine- and kallikrein-induced stimulation of human sperm motility: a comparative study. Andrologia 1975; 7: 22936.
  • 158
    De Turner E, Aparicio NJ, Turner D, Schwarzstein L. Effect of two phosphodiesterase inhibitors, cyclic adenosine 3′:5′-monophosphate, and a beta-blocking agent on human sperm motility. Fertil Steril 1978; 29: 32831.
  • 159
    Haesungcharern A, Chulavatnatol M. Stimulation of human spermatozoal motility by caffeine. Fertil Steril 1973; 24: 6625.
  • 160
    Jaiswal BS, Majumder GC. Cyclic AMP phosphodiesterase: a regulator of forward motility initiation during epididymal sperm maturation. Biochem Cell Biol 1996; 74: 66974.
  • 161
    Levin RM, Greenberg SH, Wein AJ. Quantitative analysis of the effects of caffeine on sperm motility and cyclic adenosine 3′,5′-monophosphate (AMP) phosphodiesterase. Fertil Steril 1981; 36: 798802.
  • 162
    Wang C, Chan CW, Yong KK, Yeung K.K. Comparison of the effectiveness of placebo, clomiphene citrate, mesterolone, pentoxifylline, and testosterone rebound therapy for the treatment of idiopathic oligospermia. Fertil Steril 1983; 40: 35865.
  • 163
    Marrama P, Baraghini GF, Carani C, Celani MF, Giovenco P, Grandi F, et al. Further studies on the effect of pentoxifylline on sperm count and sperm motility in patients with idiopathic oligo-asthenozoospermia. Andrologia 1985; 17: 6126.
  • 164
    Shen MR, Chiang PH, Yang RC, Hong CY, Chen SS. Pentoxifylline stimulates human sperm motility both in vitro and after oral therapy. Br J Clin Pharmacol 1991; 31: 7114.
  • 165
    Moohan JM, Winston RML, Lindsay KS. The variable effectsof 2-deoxyadenosine on human sperm motility and hyperactivation in vitro. Hum Reprod 1995; 10: 1098103.
  • 166
    Pang SC, Chan PJ, Lu A. Effects of pentoxifylline on sperm motility and hyperactivation in normozoospermic and normokinetic semen. Fertil Steril 1993; 60: 33643.
  • 167
    Fuse H, Sakamoto M, Ohta S, Katayama T. Effect of pentoxifylline on sperm motion. Arch Androl 1993; 31: 915.
  • 168
    Tournaye H, Van Steirteghem AC, Devroey P. Pentoxifylline in idiopathic male-factor infertility: a review of its therapeutic efficacy after oral administration. Hum Reprod 1994; 9: 9961000.
  • 169
    Yovich JM, Edirisinghe WR, Cummins JM, Yovich JL. Preliminary results using pentoxifylline in a pronuclear stage tubal transfer (PROST) program for severe male factor infertility. Fertil Steril 1988; 50: 17981.
  • 170
    Yovich JM, Edirisinghe WR, Cummins JM, Yovich JL. Influence of pentoxifylline in severe male factor infertility. Fertil Steril 1990; 53: 71522.
  • 171
    Tasdemir M, Tasdemir I, Kodama H, Tanaka T. Pentoxifylline enhanced acrosome reaction correlates with fertilization in vitro. Hum Reprod 1993; 8: 21027.
  • 172
    Yunes R, Fernández P, Doncel GF, Acosta AA. Cyclic nucleotide phosphodiesterase inhibition increases tyrosine phosphorylation and hyper motility in normal and pathological human spermatozoa. Biocell 2005; 29: 28793.
  • 173
    Stefanovich V. Effect of 3,7-dimethyl-1-(5-oxohexyl)-xanthine and 1-hexyl-3,7-dimethyl-xanthine on cyclic AMP phosphodi-esterase of the human umbilical cord vessels. Res Commun Chem Pathol Pharmacol 1973; 5: 65562.
  • 174
    Garbers DL, Kopf GS. The regulation of spermatozoa by calcium cyclic nucleotides. Adv Cyclic Nucleotide Res 1980; 13: 251306.
  • 175
    Tash JS, Means AR. Cyclic adenosine 3′, 5′ monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 1983; 28: 75104.
  • 176
    Ward A, Clissold SP. Pentoxifylline: a review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficiency. Drugs 1983; 34: 5060.
  • 177
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: Lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 1998; 13: 142936.
  • 178
    Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998; 13: 896900.
  • 179
    Kinutani M. Effects of pentoxifylline on sperm motion characteristics in normozoospermic men defined by a computer-aided sperm analysis. Hiroshima J Med Sci 1999; 48: 11721.
  • 180
    Kay VJ, Coutts JR, Robertson L. Pentoxifylline stimulates hyperactivation in human spermatozoa. Hum Reprod 1993; 8: 72731.
  • 181
    Lewis SE, Moohan JM, Thompson W. Effects of pentoxifylline on human sperm motility in normospermic individuals using computer-assisted analysis. Fertil Steril 1993; 59: 41823.
  • 182
    Moohan JM, Winston RML, Lindsay KS. Variability of human sperm response to immediate and prolonged exposure to pentoxifylline. Hum Reprod 1993; 8: 16961700.
  • 183
    Tournaye H, Janssens R, Devroey P, Van Steirteghem A. The influence of pentoxifylline on motility and viability of spermatozoa from normozoospermic semen samples. Int J Androl 1994; 17: 18.
  • 184
    Centola GM, Cartie RJ, Cox C. Differential responses of human sperm to varying concentration of pentoxifylline with demonstration of toxicity. J Androl 1995; 16: 13642.
  • 185
    Paul M, Sumpter JP, Lindsay KS. Factors affecting pentoxifylline stimulation of sperm kinematics in suspension. Hum Reprod 1996; 11: 192935.
  • 186
    Nassar Á, Mahony M, Morshedi M, Lin MH, Srisombut C, Oehninger S. Modulation of sperm tail protein tyrosine phosphorylation by pentoxifylline and its correlation with hyper-activated motility. Fertil Steril 1999; 71: 91923.
  • 187
    Purvis K, Muirhead GJ, Harness JA. The effects of sildenafil citrate on human sperm function in healthy volunteers. Br J Clin Pharmacol 2002; 53: 53S60S.
  • 188
    Aversa A, Mazzilli F, Rossi T, Delfino M, Isidori MA, Fabbri A. Effects of sildenafil (Viagra™) administration on seminal parameters and post-ejaculatory refractory time in normal males. Hum Reprod 2000; 15: 1314.
  • 189
    Tur-Kaspa I, Segal S, Moffa F, Massobrio M, Meltzer S. Viagra for temporary erectile dysfunction during treatments with assisted reproductive technologies: case report. Hum Reprod 1999; 14: 17834.
  • 190
    Du Plessis SS, De Jongh PS, Franken DR. Effect of acute in vivo sildenafil citrate and in vitro 8-bromo-cGMP treatments on semen parameters and sperm function. Fertil Steril 2004; 81: 102633.
  • 191
    Jannini EA, Lombardo F, Salacone P, Gandini L, Lenzi A. Treatment of sexual dysfunctions secondary to male infertility with sildenafil citrate. Fertil Steril 2004; 81: 7057.
  • 192
    Lenzi A, Lombardo F, Salacone P, Gandini L, Jannini EA. Stress, sexual dysfunctions, and male infertility. J Endocrinol Invest 2003; 26 (3 Suppl): 726.
  • 193
    Yamamoto Y, Sofikitis N, Mio Y, Miyagawa I. Influence of sexual stimulation on sperm parameters in semen samples collected via masturbation from normozoospermic men participating in an assisted reproduction program. Andrologia 2000; 32: 1318.
  • 194
    Sofikitis N, Miyagawa I. Endocrinological, biophysical, and biochemical parameters of semen collected via masturbation versus sexual intercourse. J Androl 1993; 14: 36673.
  • 195
    Salisbury GW, Vandermark NL. Physiology of Reproduction and Artificial Insemination of Cattle. San Fransisco : Freeman 1961; 3956.
  • 196
    Sharma OP, Hays RL. Release of an oxytocin substance following genital stimulation in bulls. J Reprod Fertil 1973; 35: 35962.
  • 197
    Hafs HD, Knisely RC, Desjardens C. Sperm output of dairy bulls with varying degrees of sexual preparation. J Dairy Sci 1962; 35: 35962.
  • 198
    Kanakas N, Sofikitis N, Kawamura H, Mantzavinos T. Effects of Hormones on spermatogenesis in men histological diagnosis of spermatogenic arrest at the primary spermatocytes (PS) stage. VIIth International Congress of Andrology. June 15-19, 2001, Montréal, Canada. Abstracts–President's Posters PP-036. J Androl 2001; 22: 192204.
  • 199
    Sofikitis N, Miyagawa I. Secretory dysfunction of the male accessory genital glands due to prostatic infections and fertility; a selected review of the literature. Jpn J Fertil Steril 1991; 36: 6909.
  • 200
    Portnoy L. The diagnosis and prognosis of male infertility: a study of 44 cases with special reference to sperm morphology. J Urol 1946; 48: 735.
  • 201
    Ponchietti R, Raugei A, Lanciotti E, Ademollo B, Galvan P, Poggini G. Calcium, zinc, magnesium, concentration in seminal plasma of infertile men with prostatitis. Acta Eur Fertil 1984; 15: 2835.
  • 202
    Fair WR, Couch J, Wehner N. The purification and assay of prostatic antibacterial factor (PAF). Biochem Med 1973; 8: 32939.
  • 203
    Meares EM Jr. Prostatitis. Med Clin North Am 1991; 75: 40524.
  • 204
    Ali ST, Rakkah NI. Neurophysiological role of sildenafil citrate (Viagra) on seminal parameters in diabetic males with and without neuropathy. Pak J Pharm Sci 2007; 20: 3642.
  • 205
    Pomara G, Morelli G, Canale D, Turchi P, Caglieresi C, Moschini C, et al. Alterations in sperm motility after acute oral administration of sildenafil or tadalafil in young, infertile men. Fertil Steril 2007; 88: 8605.
  • 206
    Nomura M, Vacquier VD. Proteins associated with soluble adenylyl cyclase in sea urchin sperm flagella. Cell Motil Cytoskeleton 2006; 63: 58290.
  • 207
    Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 2001; 345: 138893.
  • 208
    Bauer RJ, Rohde G. A single dose of Vardenafil had no acute effect on sperm motility in healthy males. 27th annual meeting of the American Society of Andrology, April 2427, 2002, Seattle, Washington, USA.
  • 209
    Grammeniatis E, Kanakas N, Tsounapi P, Baltogiannis D, Miyagawa I, Sofikitis N. Effects of vardenafil in sperm parameters and semen biochemistry. 32nd annual meeting of American Society of Andrology, 21-25 April, Tampa, USA. J Androl (Suppl) 2007; 28: 60.
  • 210
    Burger M, Sikka SC, Bivalacqua TJ, Lamb DJ, Hellstrom WJ. The effect of sildenafil in human sperm motion and function of normal and infertile men. Int J Impot Res 2000; 12: 22934.
  • 211
    Olmsted SS, Dubin NH, Cone RA, Moench TR. The rate at which human sperm are immobilized and killed by mild acidity. Fertil Steril 2000; 73: 68793.
  • 212
    Su YH, Vacquier VD. Cyclic GMP-specific phosphodiesterase-5 regulates motility of sea urchin spermatozoa. Mol Biol Cell 2006; 17: 11421.
  • 213
    Mostafa T. In vitro sildenafil citrate use as a sperm motility stimulant. Fertil Steril 2007; 88: 9946.
  • 214
    Lefièvre L, De Lamirande E, Gagnon C. The cyclic GMP-specific phosphodiesterase inhibitor, sildenafil, stimulates human sperm motility and capacitation but not acrosome reaction. J Androl 2000; 21: 92937.
  • 215
    Naro F, Zhang R, Conti M. Developmental regulation of unique adenosine 3′, 5′-monophosphate-specific phosphodiesterase variants during rat spermatogenesis. Endocrinology 1996; 137: 246472.
  • 216
    Cuadra DL, Chan PJ, Patton WC, Stewart SC, King A. Type 5 phosphodiesterase regulation of human sperm motility. Am J Obstet Gynecol 2000; 182: 10135.
  • 217
    Glenn D, McVicar CM, McClure N, Lewis SE. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil Steril 2007; 87: 106470.
  • 218
    Mostafa T. Tadalafil as an in vitro sperm motility stimulant. Andrologia 2007; 39: 125.
  • 219
    Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol 2002; 250: 20817.
  • 220
    Carr DW, Fujita A, Stentz CL, Liberty GA, Olson GE, Narumiya S. Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PK-A. J Biol Chem 2001; 276: 173328.
  • 221
    Burton KA, Treash-Osio B, Muller CH, Dunphy EL, McKnight GS. Deletion of type IIa regulatory subunit delocalizes protein kinase A in mouse sperm without affecting motility or fertilization. J Biol Chem 1999; 274: 241316.
  • 222
    Wayman C, Phillips S, Lunny C, Webb T, Fawcett L, Baxendale R, et al. Phosphodiesterase 11 (PDE11) regulation of spermatozoa physiology. Int J Impot Res 2005; 17: 21623.