SEARCH

SEARCH BY CITATION

References

  • 1
    Chory J. Light modulation of vegetative development. Plant Cell 1997, 9: 12251234.
  • 2
    Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 1998, 95: 26862690.
  • 3
    Lin C, Ahmad M, Gordon D, Cashmore AR. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci USA 1995, 92: 84238427.
  • 4
    Short TW, Briggs WR. The transduction of blue light signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 1994, 45: 143171.
  • 5
    García-Martinez JL, Gil J. Light regulation of gibberellin biosynthesis and mode of action. J Plant Growth Regul 2002, 20: 354368.
  • 6
    Sullivan JA, Deng XW. From seed to seed: The role of photoreceptors in Arabidopsis development. Dev Biol 2003, 260: 289297.
  • 7
    Ohgishi M, Saji K, Okada K, Sakai T. Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 2004, 101: 22232228.
  • 8
    Lin C, Shalitin D. Cryptochrome structure and signal transduction. Annu Rev Plant Biol 2003, 54: 469496.
  • 9
    Yu X, Shalitin D, Liu X, Maymon M, Klejnot J, Yang H, Lopez J et al. Derepression of the NC80 motif is critical for the photoactivation of Arabidopsis CRY2. Proc Natl Acad Sci USA 2007, 104: 72897294.
  • 10
    Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP. Genomic and physiological studies of early cryptochrome1 action demonstrate roles for auxin and gibberellin in the control of hypocotyls growth by blue light. Plant J 2003, 36: 203214.
  • 11
    Kamo M, Kawakami T, Miyatake N, Tsugita A. Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 1995, 16: 423430.
  • 12
    Giacomelli L, Rudella A, Van Wijk KJ. High light response of the Thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient Mutant vtc2-2. Plant Physiol 2006, 141: 685701.
  • 13
    Phee BK, Cho JH, Park S, Jung JH, Lee YH. Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics 2004, 4: 35603568.
  • 14
    Motoshi K, Takao K, Atsushi H, Noriaki I. Proteome analysis of Arabidopsis seedlings grown in differential gravity conditions. Space Utilize Res 2005, 21: 305308.
  • 15
    Yang YJ, Li Y, Tang DY, Liu XM. Analysis of differential expression protein of cryptochromes1 seedlings mutant by proteomics. Journal of Natural Science of Hunan Normal University 2007, 2: 108112.
  • 16
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 1976, 72: 248254.
  • 17
    Bjellqvist B, Pasquali C, Ravier F, Sanchez JC, Hochstrasser D. A nonlinear wide-range immobilized pH gradient for two-dimensional electrophoresis and its definition in a relevant pH scale. Electro-phoresis 1993, 14: 13571365.
  • 18
    Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987, 8: 9399.
  • 19
    Fenandez J, Gharahdaghi F, Mische SM. Routine identification of proteins from sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE) gels or polyvinyl difluoride membranes using matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Electrophoresis 1998, 19: 10361045.
  • 20
    Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 1999, 20: 601605.
  • 21
    Chen P, Xie JY, Liang SP. Identification of protein spots in silver-stained two dimensional gels by MALDI-TOF mass peptide map analysis. Acta Biochem Biophys Sin 2000, 32: 387391.
  • 22
    Gobom J, Schuerenberg M, Mueller M, Theiss D, Lehrach H, Nordhoff E. Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 2001, 73: 434438.
  • 23
    Mockler TC, Yu XH, Shalitin D, Parikh D, Michael TP, Liou J, Huang J et al. Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci USA 2004, 101: 1275912764.
  • 24
    Horita Y, Murai T, Miyahara M. Region segmentation using K-mean clustering and genetic algorithms. Image Processing 1994, 3: 10161020.
  • 25
    Jiao Y, Yang H, Ma L, Sun N, Yu H, Tiu L, Gao Y et al. A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol 2003, 133: 14801493.
  • 26
    Ma LG, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 2001, 13: 25892607.
  • 27
    Zhong HH, Resnick AS, Straume M, Robertson Mcclung C. Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression. Plant Cell 1997, 9: 947955.
  • 28
    Chen W, Singh KB. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 1999, 19: 667677.
  • 29
    Blum DE, Neff MM, Van Volkenburgh E. Light-stimulated cotyledon expansion in the blu3 and hy4 mutants of Arabidopsis thaliana. Plant Physiol 1994, 105: 14331436.
  • 30
    Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH. The impact of oxidative stress on Arabidopsis mitochondria. Plant J 2002, 6: 891904.
  • 31
    Parks BM, Folta KM, Spalding EP. Photocontrol of stem growth. Plant Biol 2001, 4: 436440.
  • 32
    Spalding EP. Ion channels and the transduction of light signals. Plant Cell Environ 2000, 23: 665674.
  • 33
    Cho MH, Spalding E P. An anion channel in Arabidopsis hypocotyls activated by blue light. Proc Natl Acad Sci USA 1996, 93: 81348138.
  • 34
    Folta KM, Spalding EP. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 2001, 26: 471478.
  • 35
    Ribeiro DT, Farias LP, De Almeida JD, Kashiwabara PM, Ribeiro AF, Silva-Filho MC, Menck CF et al. Functional characterization of the thi1 promoter region from Arabidopsis thaliana. J Exp Bot 2005, 56: 17971804.
  • 36
    Lin C. Plant blue-light receptors. Trends Plant Sci 2000, 5: 337342.
  • 37
    Sung Dy, Vierling E, Guy CL. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 2001, 126: 789800.
  • 38
    Kaushik R, Nawathean P, Busza A, Murad A, Emery P, Rosbash M. PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biol 2007, 5: e146.