SEARCH

SEARCH BY CITATION

References

  • 1
    Nguyen-Hackley D.H., Ramm E., Taylor C.M., Joung J.K., Dervan P.B., Pabo C.O. (2004) Allosteric inhibition of zinc-finger binding in the major groove of DNA by minor-groove binding ligands. Biochemistry;43: 38803890.
  • 2
    Gopal Y.N.V., Van Dyke M.W. (2003) Combinatorial determination of sequence specificity for nanomolar DNA-binding hairpin polyamides. Biochemistry;42: 68916903.
  • 3
    Fechter E.J., Dervan P.B. (2003) Allosteric inhibition of protein-DNA complexes by polyamide-intercalator conjugates. J Am Chem Soc;125: 84768485.
  • 4
    Ellervik U., Wang C.C.C., Dervan P.B. (2000) Hydroxybenzamide/pyrrole pair distinguishes T center dot A from A center dot T base pairs in the minor groove of DNA. J Am Chem Soc;122: 93549360.
  • 5
    Kikuta E., Murata M., Katsube N., Koike T., Kimura E. (1999) Novel recognition of thymine base in double-stranded DNA by zinc(II)-macrocyclic tetraamine complexes appended with aromatic groups. J Am Chem Soc;121: 54265436.
  • 6
    Oyoshi T., Kawakami W., Narita A., Bando T., Sugiyama H. (2003) Inhibition of transcription at a coding sequence by alkylating polyamide. J Am Chem Soc;125: 47524754.
  • 7
    Wada T., Minaminoto N., Inaki Y., Inoue Y. (2000) Peptide ribonucleic acids (PRNA): 2. A novel strategy for active control of DNA recognition through berate ester formation. J Am Chem Soc;122: 69006910.
  • 8
    Jantz D., Amann B.T., Gatto G.J., Berg J.M. (2004) The design of functional DNA-binding proteins based on zinc finger domains. Chem Rev;104: 789799.
  • 9
    Vazquez M.E., Caamano A.M., Mascarenas J.L. (2003) From transcription factors to designed sequence-specific DNA-binding peptides. Chem Soc Rev;32: 338349.
  • 10
    Kovacic R.T., Welch J.T., Franklin S.J. (2003) Sequence-selective DNA cleavage by a chimeric metallopeptide. J Am Chem Soc;125: 66566662.
  • 11
    Lajmi A.R., Lovrencic M.E., Wallace T.R., Thomlinson R.R., Shin J.A. (2000) Minimalist, alanine-based, helical protein dimers bind to specific DNA sites. J Am Chem Soc;122: 56385639.
  • 12
    Xuereb H., Maletic M., Gildersleeve J., Pelczer I., Kahne D. (2000) Design of an oligosaccharide scaffold that binds in the minor groove of DNA. J Am Chem Soc;122: 18831890.
  • 13
    Zondlo N.J., Schepartz A. (1999) Highly specific DNA recognition by a designed miniature protein. J Am Chem Soc;121: 69386939.
  • 14
    Joubert A., Sun X.W., Johansson E., Bailly C., Mann J., Neidle S. (2003) Sequence-selective targeting of long stretches of the DNA minor groove by a novel dimeric bis-benzimidazole. Biochemistry;42: 59845992.
  • 15
    Bentin T., Nielsen P.E. (2003) Superior duplex DNA strand invasion by acridine conjugated peptide nucleic acids. J Am Chem Soc;125: 63786379.
  • 16
    Proudfoot E.M., Mackay J.P., Karuso P. (2001) Probing site specificity of DNA binding metallointercalators by NMR spectroscopy and molecular modeling. Biochemistry;40: 48674878.
  • 17
    Esposito D., DelVecchio P., Barone G. (1997) Interactions with natural polyamines and thermal stability of DNA. A DSC study and a theoretical reconsideration. J Am Chem Soc;119: 26062613.
  • 18
    Bielinska A.U., Chen C.L., Johnson J., Baker J.R. (1999) DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconjug Chem;10: 843850.
  • 19
    Tang M.X., Szoka F.C. (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther;4: 823832.
  • 20
    Bielinska A.U., KukowskaLatallo J.F., Baker J.R. (1997) The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim Biophys Acta-Gene Struct Expr;1353: 180190.
  • 21
    Voet D., Voet J.G. (1995) Biochemistry, 2nd edn. New York, USA: John Wiley & Sons, Inc.;p. 11241131.
  • 22
    Grayson S.K., Frechet J.M.J. (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev;101: 38193867.
  • 23
    Goodman C.M., Rotello V.M. (2004) Biomacromolecule surface recognition using nanoparticles. Mini Rev Org Chem;1: 103114.
  • 24
    Sandhu K.K., McIntosh C.M., Simard J.M., Smith S.W., Rotello V.M. (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem;13: 36.
  • 25
    McIntosh C.M., Esposito E.A., Boal A.K., Simard J.M., Martin C.T., Rotello V.M. (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc;123: 76267629.
  • 26
    Ujvari A., Martin C.T. (1996) Thermodynamic and kinetic measurements of promoter binding by T7 RNA polymerase. Biochemistry;35: 1457414582.
  • 27
    Steitz T.A. (2004) The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. Curr Opin Struct Biol;14: 49.
  • 28
    Kukarin A., Rong M.Q., McAllister W.T. (2003) Exposure of T7 RNA polymerase to the isolated binding region of the promoter allows transcription from a single-stranded template. J Biol Chem;278: 24192424.
  • 29
    Rasmussen H., Kastrup J.S., Nielsen J.N., Nielsen J.M., Nielsen P.E. (1997) Crystal structure of a peptide nucleic acid (PNA) duplex at 1.7 Å resolution. Nat Struct Biol;4: 98101.
  • 30
    Wittung P., Nielsen P.E., Buchardt O., Egholm M., Norden B. (1994) DNA-like double helix formed by peptide nucleic-acid. Nature;368: 561563.
  • 31
    Cheng Y.K., Pettitt B.M. (1992) Stabilities of double-strand and triple-strand helical nucleic-acids. Prog Biophys Mol Biol;58: 225257.
  • 32
    Tajmirriahi H.A., Ahmad R., Naoui M., Diamantoglou S. (1995) The effect of Hcl on the solution structure of calf thymus DNA – a comparative-study of DNA denaturation by proton and metal-cations using Fourier-transform IR difference spectroscopy. Biopolymers;35: 493501.
  • 33
    Oconnor T., Mansy S., Bina M., McMillin D.R., Bruck M.A., Tobias R.S. (1982) The pH-dependent structure of calf thymus DNA studied by Raman-spectroscopy. Biophys Chem;15: 5364.
  • 34
    Manning G.S. (2003) Is a small number of charge neutralizations sufficient to bend nucleosome core DNA onto its superhelical ramp? J Am Chem Soc;125: 1508715092.
  • 35
    Mahtab R., Rogers J.P., Singleton C.P., Murphy C.J. (1996) Preferential adsorption of a ‘kinked’ DNA to a neutral curved surface: comparisons to and implications for nonspecific DNA-protein interactions. J Am Chem Soc;118: 70287032.
  • 36
    Delcros J.G., Sturkenboom M., Basu H.S., Shafer R.H., Szollosi J., Feuerstein B.G., Marton L.J. (1993) Differential-effects of spermine and its analogs on the structures of polynucleotides complexed with ethidium-bromide. Biochem J;291: 269274.
  • 37
    Geall A.J., Al-Hadithi D., Blagbrough I.S. (2002) Efficient calf thymus DNA condensation upon binding with novel bile acid polyamine amides. Bioconjug Chem;13: 481490.
  • 38
    Minagawa K., Matsuzawa Y., Yoshikawa K., Matsumoto M., Doi M. (1991) Direct observation of the biphasic conformational change of DNA induced by cationic polymers. FEBS Lett;295: 6769.
  • 39
    Hong R., Fischer N.O., Verma A., Goodman C.M., Emrick T., Rotello V.M. (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc;126: 739743.
  • 40
    Simard J., Briggs C., Boal A.K., Rotello V.M. (2000) Formation and pH-controlled assembly of amphiphilic gold nanoparticles. Chem Commun;19431944.
  • 41
    Templeton A.C., Hostetler M.J., Kraft C.T., Murray R.W. (1998) Reactivity of monolayer-protected gold cluster molecules: steric effects. J Am Chem Soc;120: 19061911.
  • 42
    Wang G.L., Zhang J., Murray R.W. (2002) DNA binding of an ethidium intercalator attached to a monolayer-protected gold cluster. Anal Chem;74: 43204327.
  • 43
    Neidle S. (2002) Nucleic Acid Structure and Recognition. New York: Oxford University Press;p. 89138.
  • 44
    Chaires J.B. (1998) Drug-DNA interactions. Curr Opin Struct Biol;8: 314320.
  • 45
    Biswas K., Pal S., Carbeck J.D., Kahne D. (2000) The molecular basis for pyrimidine-selective DNA binding: analysis of calicheamicin oligosaccharide derivatives by capillary electrophoresis. J Am Chem Soc;122: 84138420.
  • 46
    Tien J., Terfort A., Whitesides G.M. (1997) Microfabrication through electrostatic self-assembly. Langmuir;13: 53495355.
  • 47
    Brust M., Walker M., Bethell D., Schiffrin D.J., Whyman R. (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J Chem Soc Chem Commun;801802.
  • 48
    Boger D.L., Fink B.E., Brunette S.R., Tse W.C., Hedrick M.P. (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J Am Chem Soc;123: 58785891.
  • 49
    Chatterjee A., Moulik S.P., Sanyal S.K., Mishra B.K., Puri P.M. (2001) Thermodynamics of micelle formation of ionic surfactants: a critical assessment for sodium dodecyl sulfate, cetyl pyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements. J Phys Chem B;105: 1282312831.
  • 50
    Rubio D.A.R., Zanette D., Nome F., Bunton C.A. (1994) Effect of 1-butanol on micellization of sodium dodecyl-sulfate and on fluorescence quenching by bromide ion. Langmuir;10: 11511154.
  • 51
    Fischer N.O., Verma A., Goodman C.M., Simard J.M., Rotello V.M. (2003) Reversible ‘irreversible’ inhibition of chymotrypsin using nanoparticle receptors. J Am Chem Soc;125: 1338713391.
  • 52
    Griffiths M. (1974) Introduction to Human Physiology. New York, USA: Macmillan Publishing Co., Inc.;p. 121.