• 1
    Hammes G.G. (2005) Spectroscopy for the Biological Sciences. New York, USA: John Wiley & Sons, Inc.
  • 2
    Berova N., Nakanishi K., Woody R.W. (2000) Circular Dichroism: Principles and Applications, 2nd edn. New York, USA: Wiley-VCH.
  • 3
    Fasman G.D. (1996) Circular Dichroism and the Conformational Analysis of Biomolecules. New York, USA: Plenum Publishing Corp.
  • 4
    Barrow C.J., Yasuda A., Kenny P.T., Zagorski M.G. (1992) Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer’s disease. Analysis of circular dichroism spectra. J Mol Biol;225:10751093.
  • 5
    Hope J., Shearman M.S., Baxter H.C., Chong A., Kelly S.M., Price N.C. (1996) Cytotoxicity of prion protein peptide (PrP106-126) differs in mechanism from the cytotoxic activity of the Alzheimer’s disease amyloid peptide, Ah 25–35. Neurodegeneration;5:111.
  • 6
    Whitmore L., Wallace B.A. (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers;89:392400.
  • 7
    Velluz L., Legrand M., Grosjean M. (1965) Optical Circular Dichroism: Principles, Measurements and Applications. New York, NY: Academic Press.
  • 8
    Abu-Shumays A., Duffield J.J. (1966) Circular dichroism theory and instrumentation. Alnal Chem;38:A29A58.
  • 9
    Hennessey J.P., Johnson W.C. (1981) Information content in the circular dichroism of proteins. Biochemistry;20:10851094.
  • 10
    Manavalan P., Johnson W.C. Jr (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem;167:7685.
  • 11
    Kelly S.M., Price N.C. (1997) The application of circular dichroism to studies of protein folding and unfolding. Biochim Biophys Acta;1338:161185.
  • 12
    Kelly S.M., Jess T.J., Price N.C. (2005) How to study proteins by circular dichroism. Biochim Biophys Acta;1751:119139.
  • 13
    Kelly S.M., Price N.C. (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci;1:349384.
  • 14
    Krell T., Horsburgh M.J., Cooper A., Kelly S.M., Coggins J.R. (1996) Localization of the active site of type II dehydroquinases. Identification of a common arginine-containing motif in the two classes of dehydroquinases. J Biol Chem;271:2449224497.
  • 15
    Purdie N., Swallow K.A., Murphy L.H., Purdies R.B. (1989) Analytical applications of circular dichroism. J Pharma Biomed Anal;7:15191526.
  • 16
    Kh. Tafreshi N., Hosseinkhani S., Sadeghizadeh M., Sadeghi M., Ranjbar B., Naderi-Manesh H. (2007) The influence of insertion of a critical residue (Arg356) in structure and bioluminescence spectra of firefly luciferase. J Biol Chem;282:86418647.
  • 17
    Protasevich I., Ranjbar B., Lobachov V., Makarov A., Gilli A., Briand C. (1997) Conformation and thermal denaturation of apocalmodulin: role of electrostatic mutations. Biochemistry;36:20172024.
  • 18
    Hadizadeh Shirazy N., Ranjbar B., Hosseinkhani S., Khalifeh K., Riahi Madvar A., Naderi-Manesh H. (2007) Critical role of Glu175 on stability and folding of bacterial luciferase: stopped-flow fluorescence study. J Biochem Mol Biol;40:453458.
  • 19
    Hassan Sajedi R., Naderi-Manesh H., Khajeh K., Ranjbar B., Ghaemi N., Naderi-Manesh M. (2004) Purification, characterization, and structural investigation of a new moderately thermophilic and partially calcium-independent extracellular α-amylase from Bacillus sp. TM1. Appl Biochem Biotechnol;119:4150.
  • 20
    Hassan Sajedi R., Taghdir M., Naderi-Manesh H., Khajeh K., Ranjbar B. (2007) Nucleotide sequence, structural investigation and homology modeling studies of a Ca2+-independent α-amylase with acidic pH-profile. J Biochem Mol Biol;40:315324.
  • 21
    Riahi Madvar A., Hosseinkhani S., Khajeh K., Ranjbar B., Asoodeh A. (2005) Implication of a critical residue (Glu175) in structure and function of bacterial luciferase. FEBS Lett;579:47014706.
  • 22
    Hassani L., Ranjbar B., Khajeh K., Naderi-Manesh H., Naderi-Manesh M., Sadeghi M. (2006) Horseradish peroxidase thermostabilization: the combinatorial effects of the surface modification and the polyols. Enz Microbial Technol;38:118125.
  • 23
    Schulga A., Kurbanov F., Kirpichinikov M., Protasevich I., Lobachov V., Ranjbar B., Chekhov V., Polyakov K., Engelborghs Y., Makarov A. (1998) Comparative study of binase and barnase: experience in chimeric ribonuclease. Protein Eng;11:775782.
  • 24
    Maroufi B., Ranjbar B., Khajeh K., Naderi-Manesh H., Yaghoubi H. (2008) Structural studies of hen egg-white lysozyme dimer: comparison with monomer. Biochim Biophys Acta;1784:10431049.
  • 25
    Mattice W.L., Riser J.M., Clark D.S. (1976) Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry;15:42644272.
  • 26
    Pande V.S., Rokhsar D.S. (1998) Is the molten globule a third phase of proteins? Proc Natl Acad Sci USA;95:14901494.
  • 27
    Kuwajima K. (2002) The role of the molten globule state in protein folding: the search for a universal view of folding. Proc Ind Natl Sci Acad;68:333340.
  • 28
    Alikhajeh J., Khajeh K., Naderi-Manesh M., Ranjbar B., Sajedi R.H., Naderi-Manesh H. (2007) Kinetic analysis, structural studies and prediction of pKa values of Bacillus KR-8104 α-amylase: The determinants of pH-activity profile. Enz Microb Technol;41:337345.
  • 29
    Mossavarali S., Hosseinkhani S., Ranjbar B., Miroliaei M. (2006) Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride. Int J Biol Macromol;39:192196.
  • 30
    Asghari S.M., Khajeh K., Moradian F., Ranjbar B., Naderi-Manesh H. (2004) Acid-induced conformational changes in Bacillus amyloliquefaciens α-amylase: Appearance of a molten globule like state. Enz Microb Technol;35:5157.
  • 31
    Hosseinkhani S., Ranjbar B., Naderi-Manesh H., Nemat-Gorgania M. (2004) Chemical modification of glucose oxidase: possible formation of molten globule-like intermediate structure. FEBS Lett;561:213216.
  • 32
    Arai M., Kuwajima K. (2000) Role of the molten globule state in protein folding. Adv Protein Chem;53:209282.
  • 33
    Shokri M.M., Khajeh K., Alikhajeh J., Asoodeh A., Ranjbar B., Hosseinkhani S., Sadeghi M. (2006) Comparison of the molten globule states of thermophilic and mesophilic α-amylases. Biophys Chem;122:5865.
  • 34
    Moosavi-Movahedi A.A., Chamani J., Goto Y., Hakimelahi G.H. (2003) Formation of the molten globule-like state of cytochrome c induced by n-alkyl sulfates at low concentrations. J Biochem;133:93102.
  • 35
    Boren K., Andersson P., Larsson M., Carlsson U. (1999) Characterization of a molten globule state of bovine carbonic anhydrase III: loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum. Biochim Biophys Acta;1430:111118.
  • 36
    Ptitsyn O.B. (1992) The molten globule state. In: CreightonT.E., editor. Protein Folding. New York: Freeman;pp. 243300.
  • 37
    Langel Ü. (2007) Handbook of Cell-Penetrating Peptides, 2nd edn. USA: Taylor & Francis Group, LLC.
  • 38
    Hallbrink M., Floren A., Elmquist A., Pooga M., Bartfai T., Langel U. (2001) Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta;1515:101109.
  • 39
    Pooga M., Hallbrink M., Zorko M., Langel U. (1998) Cell penetration by transportan. FASEB J;12:6777.
  • 40
    Morris M.C., Depollier J., Mery J., Heitz F., Divita G. (2001) A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol;19:11731176.
  • 41
    Morris M.C., Chaloin L., Mery J., Heitz F., Divita G. (1999) A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res;27:35103517.
  • 42
    Morris M.C., Vidal P., Chaloin L., Heitz F., Divita G. (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res;25:27302736.
  • 43
    Koppelhus U., Awasthi S.K., Zachar V., Holst H.U., Ebbesen P., Nielsen P.E. (2002) Cell dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev;12:5163.
  • 44
    Eriksson M., Nielsen P.E., Good L. (2002) Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J Biol Chem;277:71447147.
  • 45
    Koch A.M., Reynolds F., Kircher M.F., Merkle H.P., Weissleder R., Josephson L. (2003) Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. Bioconjug Chem;14:11151121.
  • 46
    Tseng Y.L., Liu J.J., Hong R.L. (2002) Translocation of liposomes into cancer cells by cell penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol;62:864872.
  • 47
    Herbig M.E., Weller K.M., Merkle H.P. (2007) Reviewing biophysical and cell biological methodologies in cell-penetrating peptide (CPP) research. Crit Rev Ther Drug Car Sys;24:203255.
  • 48
    Pujals S., Giralt E. (2008) Proline-rich, amphipathic cell-penetrating peptides. Adv Drug Deliv Rev;60:473484.
  • 49
    Rabanal F., Ludevid M.D., Pons M., Giralt E. (1993) CD of proline-rich polypeptides: application to the study of the repetitive domain of maize glutelin-2. Biopolymers;33:10191028.
  • 50
    Berlose J.P., Convert O., Derossi D., Brunissen A., Chassaing G. (1996) Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments. Eur J Biochem;242:372386.
  • 51
    Magzoub M., Eriksson L.E., Graslund A. (2002) Conformational states of the cell-penetrating peptide penetratin when interacting with phospholipid vesicles: effects of surface charge and peptide concentration. Biochim Biophys Acta;1563:5363.
  • 52
    Thoren P.E., Persson D., Esbjorner E.K., Goksor M., Lincoln P., Norden B. (2004) Membrane binding and translocation of cell-penetrating peptides. Biochemistry;43:34713489.
  • 53
    Magzoub M., Eriksson L.E., Graslund A. (2003) Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys Chem;103:271288.
  • 54
    Persson D., Thoren P.E., Lincoln P., Norden B. (2004) Vesicle membrane interactions of penetratin analogues. Biochemistry;43:1104511055.
  • 55
    Lindberg M., Jarvet J., Langel U., Graslund A. (2001) Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry;40:31413149.
  • 56
    Barany-Wallje E., Andersson A., Graslund A., Maler L. (2004) NMR solution structure and position of transportan in neutral phospholipid bicelles. FEBS Lett;567:265269.
  • 57
    Van Holde K.E., Johnson W.C., Ho P.S. (1998) Principle of Physical Biochemistry. New Jersey, USA: Prentice-Hall Inc., p. 418451.
  • 58
    Warshaw M.M., Cantor C.R. (1970) Oligonucleotide interactions. IV. Conformational differences between deoxy- and ribodinucleoside phosphates. Biopolymers;9:10791103.
  • 59
    Bloomfield V.A., Crothers D.M., Tinoco I. Jr, with contribution from, Hearst J.E., Wemmer D.E., Kollman P.A., Turner D.H. (2000) Nucleic Acids: Structures, Properties, and Functions. Sausalito, California, USA: University Science Books.
  • 60
    Bush C.A., Tinoco I. Jr (1967) Calculation of the optical rotatory dispersion of dinucleoside phosphates. Appendix. Derivation of the ORD and CD curves from absorption and rotational strengths. J Mol Biol;23:601614.
  • 61
    Gray D.M., Liu J.-J., Ratliff R.L., Allen F.S. (1981) Sequence dependence of the circular dichroism of synthetic double-stranded RNAs. Biopolymers;20:13371382.
  • 62
    Sprecher C.A., Baase W.A., Johnson W.C. Jr (1979) Conformation and circular dichroism of DNA. Biopolymers;18:10091019.
  • 63
    Gray D.M., Taylor T.N., Lang D. (1978) Dehydrated circular DNA: Circular dichroism of. molecules in ethanolic solutions. Biopolymers;17:145157.
  • 64
    Riazance J.H., Baase W.A., Johnson W.C. Jr, Hall K., CNZ P., Tinoco I. Jr (1985) Evidence for Z-Form RNA by vacuum UV-circular dichroism. Nucleic Acids Res;13:49834989.
  • 65
    Gray D.M., Johnson K.H., Vaughan M.E., Morris P.A., Sutherland J.C., Ratliff R.L. (1990) The vacuum VCD bands of repeating DNA sequences are dependent on sequence and conformation. Biopolymers;29:317323.
  • 66
    Williams A.L. Jr, Cheong C., Tinoco I. Jr, Clark L.B. (1986) Vacuum ultraviolet circular dichroism as an indicator of helical handedness in nucleic acids. Nucleic Acids Res;14:66496659.
  • 67
    Nelson R.G., Johnson W.C.. Jr (1970) Conformation of DNA in ethylene glycol. Biochem Biophys Res Commun;41:211216.
  • 68
    Gennis R.B., Cantor C.R. (1972) Optical studies of a conformational change in DNA before melting. J Mol Biol;65:381399.
  • 69
    Studdert D.S., Patroni M., Davis R.C. (1972) Circular dichroism of DNA: temperature and salt dependence. Biopolymers (Pept. Sci.);11:761779.
  • 70
    Ivanov V.I., Minchenkova L.E., Schyolkina A.K., Poletayev A.I. (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers (Pept. Sci.);12:89110.
  • 71
    Ivanov V.I., Minchenkova L.E., Minyat E.E., Frank-Kamonetshii M.D., Schyolkina A.K. (1974) The B to A transition of DNA in solution. J Mol Biol;87:817833.
  • 72
    Girod J.C., Johnson W.C. Jr, Huntington S.K., Maestre M.F. (1973) Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry;12:50925096.
  • 73
    Johnson W.C. Jr, Girod J.C. (1974) A novel denaturation of DNA. Biochim Biophys Acta;353:193199.
  • 74
    Hanlon S., Brudno S., Wu T.T., Wolf B. (1975) Structural transitions of deoxyribonucleic acid in aqueous electrolyte solutions. I. Reference spectra of conformational limits. Biochemistry;14:16481660.
  • 75
    Maestre M.F., Gray D.M., Cook R.B. (1971) Magnetic circular dichroism study on synthetic polynucleotides, bacteriophage structure, and DNA’s. Biopolymers (Pept. Sci.);10:25372553.
  • 76
    Dorman B.P., Maestre M.F. (1973) Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2. Proc Natl Acad Sci USA;70:255259.
  • 77
    Baase W.A., Johnson W.C.. Jr (1979) Circular dichroism and DNA secondary structure. Nucleic Acids Res;6:797814.
  • 78
    Shih T.Y., Fasman D.G. (1970) Conformation of deoxyribonucleic acid in chromatin: A circular dichroism study. J Mol Biol;52:125129.
  • 79
    Hanlon S., Johnson R.S., Wolf G., Chan A. (1972) Mixed conformations of deoxyribonucleic acid in chromatin: a preliminary report. Proc Natl Acad Sci USA;69:32633267.
  • 80
    Lawrence J.-J., Chan D.C.F., Piette L.H. (1976) Conformational state of DNA in chromatin subunits. Circular dichroism, melting, and ethidium bromide binding analysis. Nucleic Acids Res;3:28792893.
  • 81
    Rill R., Van Holde K.E. (1973) Properties of nuclease-resistant fragments of calf thymus chromatin. J Biol Chem;248:10801083.
  • 82
    Asadi M., Safaei E., Ranjbar B., Hasani L. (2005) A study on the binding of two water-soluble tetrapyridinoporphyrazinato copper(II) complexes to DNA. J Mol Struct;754:116123.
  • 83
    Asadi M., Safaei E., Ranjbar B., Hasani L. (2004) Thermodynamic and spectroscopic study on the binding of cationic ZD(II) and Co(II) tetrapyridinoporphyrazines to calf thymus DNA: The role of the central metal in binding parameters. New J Chem;28:12271234.
  • 84
    Fiel R.J., Datta-Gupta N., Mark E.H., Howard J.C. (1981) Induction of DNA damage by porphyrin photosensitizers. Cancer Res;41:35433545.
  • 85
    Prasueth D., Gaudemer A., Verlhac J., Kraljic I., Sissoeff I., Guille E. (1986) Photocleavage of DNA in presence of synthetic water-soluble porphyrins. Photochem Photobiol;44:717724.
  • 86
    Magda D., Wright M., Miller R.A., Sessler J.L., Sansom P.I. (1995) Sequence-Specific Photocleavage of DNA by an Expanded Porphyrin with Irradiation above 700 nm. J Am Chem Soc;117:36293630.
  • 87
    Dixon D.W., Schinazi R., Marzilli L.G. (1990) Porphyrins as agents against the human immunodeficiency virus. Ann NY Acad Sci;616:511513.
  • 88
    Fornasiero D., Kurucsev T. (1981) Circular dichroism spectra and the interaction between acridine dyes and deoxyribonucleic acid. J Phys Chem;85:613618.
  • 89
    Safaei E., Ranjbar B., Hasani L. (2007) A study of the assembly of Fe(II) and dual binding of Ni(II) porphyrazines on CT-DNA. J Porphyrins Phthalocyanines;11:805814.
  • 90
    Bathaie S.Z., Bolhasani A., Hoshyar R., Ranjbar B., Sabouni F., Moosavi-Movahedi A.-A. (2007) Interaction of saffron carotenoids as anticancer compounds with ctDNA, oligo (dG.dC)15, and oligo (dA.dT)15. DNA Cell Biol;26:533540.
  • 91
    Liu H., Webster T.J. (2007) Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials;28:354369.
  • 92
    Tziampazis E., Kohn J., Moghe P.V. (2000) PEG-variant biomaterials as selectively adhesive protein templates model surfaces for controlled cell adhesion and migration. Biomaterials;21:511520.
  • 93
    Tanaka M., Motomura T., Kawada M., Anzai T., Kasori Y., Shiroya T., Shimura K., Onishi M., Mochizuki A. (2000) Blood compatible aspects of poly (2-methoxyethylacrylate) (PMEA) relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials;21:14711481.
  • 94
    Ghosh P.S., Han G., Erdogan B., Rosado O., Krovi S.A., Rotello V.M. (2007) Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chem Biol Drug Design;70:1318.
  • 95
    Goodman C.M., Chari N.S., Han G., Hong R., Ghosh P., Rotello V.M. (2006) DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements. Chem Biol Drug Design;67:297304.
  • 96
    Goodman C.M., Rotello V.M. (2004) Biomacromolecule surface recognition using nanoparticles. Mini Rev Org Chem;1:103114.
  • 97
    Sandhu K.K., McIntosh C.M., Simard J.M., Smith S.W., Rotello V.M. (2002) Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem;13:36.
  • 98
    Kikuta E., Murata M., Katsube N., Koike T., Kimura E. (1999) Novel recognition of thymine base in double-stranded DNA by zinc(II)-macrocyclic tetraamine complexes appended with aromatic groups. J Am Chem Soc;121:54265436.
  • 99
    Hermann T., Patel D.J. (2000) Biochemistry - adaptive recognition by nucleic acid aptamers. Science;287:820825.
  • 100
    Zhang X.G., Teng D.Y., Wu Z.M., Wang X., Wang Z., Yu D.M., Li C.X. (2008) PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release. J Mater Sci: Mater Med;19:35253533.
  • 101
    Wang X.H., Goh S.H.Z.H., Lee S.Y., Wu C. (1999) Light-scattering characterization of fullerene-containing poly(alkyl methacrylate)s in THF. Macromolecules;32:27862788.
  • 102
    Singh J., Dutta P.K. (2008) Spectroscopic and conformational study of chitosan acid salts. J Polym Res;8:92219223.
  • 103
    Kissmann J., Ausar S.F., Foubert T.R., Brock J., Switzer M.H., Detzi E.J., Vedvick T.S., Middaugh C.R. (2008) Physical stabilization of norwalk virus-like particles. J Pharm Sci;97:42084218.
  • 104
    Caminade A.-M., Laurent R., Majoral J.-P. (2005) Characterization of dendrimers. Adv Drug Deliv Rev;57:21302146.
  • 105
    Sadeghizadeh M., Ranjbar B., Damaghi M., Khaki L., Sarbolouki M.N., Najafi F., Parsaee S., Ziaee A.-A., Massumi M., Lubitz W., Kudela P., Paukner S., Karami A. (2008) Dendrosomes as novel gene porters-III. J Chem Technol Biotechnol;83:912920.
  • 106
    Xu Y., Szoka F.C.. Jr (1996) Mechanism of DNA release from cationic liposome–DNA complexes used in cell transfection. Biochemistry;35:56165623.
  • 107
    Chaumette J.L., Laufersweiler M.J., Parquette J.R. (1998) Synthesis and chiroptical properties of dendrimers elaborated from a chiral, nonracemic central core. J Org Chem;63:93999405.
  • 108
    Yevdokimov Y.M., Salyanov V.I. (2003) Liquid crystalline dispersions of complexes formed by chitosan with double-stranded nucleic acids. Liq Cryst;30:10571074.
  • 109
    Chen Y.M., Chen C.F., Xi F. (1998) Chiral dendrimers with axial chirality. Chirality;10:661666.
  • 110
    Rosini C., Superchi S., Peerlings H.W.I., Meijer E.W. (2000) Enantiopure dendrimers derived from the 1,1V-binaphthyl moiety: a correlation between chiroptical properties and conformation of the 1,1V-binaphthyl template. Eur J Org Chem;2000:6171.
  • 111
    Murer P., Seebach D. (1995) Synthesis and properties of first to third generation dendrimers with doubly and triply branched chiral building blocks. Angew Chem Int Ed Engl;34:21162119.
  • 112
    Cicchi S., Goti A., Rosini C., Brandi A. (1998) Enantiomerically pure dendrimers based on a trans-3,4-dihydroxypyrrolidine. Eur J Org Chem;11:25912597.
  • 113
    Dennig J., Duncan E. (2002) Gene transfer into eukaryotic cells using activated polyamidiamine dendrimers. J Biotechnol;90:339347.
  • 114
    Budker V.G., Slattum P.M., Monahan S.D., Wolff J.A. (2002) Entrapment and condensation of DNA in neutral reverse micelles. Biophys J;82:15701579.
  • 115
    Kudsiova L., Arafiena C., Lawrence M.J. (2008) Characterization of chitosan-coated vesicles encapsulating DNA suitable for gene delivery. J. Pharma Sci;97:39813997.
  • 116
    Gu Q., Cheng C., Gonela R., Suryanarayanan S., Anabathula S., Dai K., Haynie D.T. (2006) DNA nanowire fabrication. Nanotechnol;17:R14R25.
  • 117
    Yogeswaran U., Chen S. (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors;8:290313.
  • 118
    Li Y., Qian F., Xiang J., Lieber C.M. (2006) Nanowire electronic and optoelectronic devices. Mater Today;9:1827.
  • 119
    Braun E., Eichen Y., Sivan U., Ben-Yoseph G. (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature;391:775778.
  • 120
    Kinsella J.M., Ivanisevic A. (2007) DNA-templated magnetic nanowires with different compositions: fabrication and analysis. Langmuir;23:38863890.
  • 121
    Kinsella J.M., Ivanisevic A. (2005) Enzymatic clipping of DNA wires coated with magnetic nanoparticles. J Am Chem Soc;127:32763277.
  • 122
    Kinsella J.M., Shalaev M.W., Ivanisevic A. (2007) Ligation of nanoparticle coated DNA cleaved with restriction enzymes. Chem Mater;19:35863588.
  • 123
    Jaganathana H., Ivanisevic A. (2008) Circular dichroism study of enzymatic manipulation on magnetic and metallic DNA template nanowires. Colloids Surf B Biointerf;67:279283.
  • 124
    Mason W.R. (2007) A Practical Guide to Magnetic Circular Dichroism Spectroscopy. New York, USA: John Wiley & Sons, Inc.
  • 125
    Ball D.W. (1991) An introduction to magnetic circular dichroism spectroscopy; general theory and applications. Spectroscopy;6:1824.
  • 126
    Funk T., Deb A., George S.J., Wang H., Cramer S.P. (2005) X-ray magnetic circular dichroism-a high energy probe of magnetic properties. Coord Chem Rev;249:330.
  • 127
    Johnson M.K. (2000) CD and MCD spectroscopy. In: QueL.Jr, editor. Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism. Sausalito, California: University Science Books;p. 233285.
  • 128
    Johnson M.K., Robinson A.E., Thomson A.J. (1982) Low-temperature magnetic circular dichroism of iron-sulfur proteins. In: SpiroT.G., editor. Iron-Sulfur Proteins. New York: Wiley;p. 367406.
  • 129
    Dawson J.H., Dooley D.M. (1989) Magnetic circular dichroism spectroscopy of iron porphyrins and heme proteins. In: LeverA.B.P., GrayH.B., editors. Iron Porphyrins, Part 3. New York: VCH Publishers;p. 192.
  • 130
    Cheesman M.R., Greenwood C., Thomson A.J. (1991) Magnetic circular dichroism of hemoproteins. In: SykesAG, ed. Advances in Inorganic Chemistry. Vol. 36, San Diego, CA: Academic; p. 230255.
  • 131
    Dooley D.M., Dawson J.H. (1984) Bioinorganic applications of magnetic circular dichroism spectroscopy: copper, rare-earth ions, cobalt and non-heme iron systems. Coord Chem Rev;60:166.
  • 132
    Solomon E.I., Pavel E.G., Loeb K.E., Campochiaro C. (1995) Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord Chem Rev;144:369460.
  • 133
    Cramer S.P. (2003) ACS symposium series 858 paramagnetic resonance of metallobiomolecules. 358364.
  • 134
    Tam C.N., Bour P., Keiderling T.A. (1996) Observations of rotational magnetic moments in the ground and some excited vibrational ∑ states of C2H2, C2HD, and C2D2 by magnetic vibrational circular dichroism. J Chem Phys;104:18131824.
  • 135
    Tinoco I.. Jr, Turner D.H. (1976) Fluorescence detected circular dichroism. Theory. J Am Chem Soc;98:64536456.
  • 136
    Turner D.H. (1978) Fluorescence-detected circular dichroism. Methods Enzymol;49:199214.
  • 137
    Tran C.D., Fendler J.H. (1979) Stereoselective energy transfer induced by circularly polarized light. J Am Chem Soc;101:12851288.
  • 138
    Harada N., Nakanishi K. (1983) Circular Dichroic Spectroscopy-Exciton Coupling in Organic Stereochemistry. Mill Valley, CA: University Science Books.
  • 139
    Dong J.G., Wada A., Takahashi T., Nakanishi K., Berova N. (1997) Sensitivity enhancement of exciton coupling by fluorescence detected circular dichroism (FDCD). J Am Chem Soc;119:1202412025.
  • 140
    Tanaka K., Pescitelli G., Nakanishi K., Berova N. (2005) Fluorescence detected exciton coupled circular dichroism: development of new fluorescent reporter groups for structural studies. Monatshefte fur Chemie;136:367395.
  • 141
    Ramsay G., Eftink M.R. (1994) A multidimensional spectrophotometer for monitoring thermal unfolding transitions of macromolecules. Biophys J;31:516523.
  • 142
    Keiderling T.A. (1990) Vibrational CD: Comparison of Techniques and Practical Considerations, in Practical Fourier Transform Infrared Spectroscopy. New York, USA: Academic Press;p. 203284.
  • 143
    Eglinton D.G., Johnson M.K., Thomson A.J., Gooding P.E., Greenwood C. (1980) Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase. Biochem J;191:319331.
  • 144
    Oberg K.A., Ruysschaert J.M., Goormaghtigh E. (2004) The optimization of protein secondary structure determination with infrared and circular dichroism spectra. Eur J Biochem;271:29372948.
  • 145
    Fujii H., Finnegan M.G., Miki T., Crouse B.R., Kakinuma K., Johnson M.K. (1995) Spectroscopic identification of the heme axial ligation of cytochrome b558 in the NADPH oxidase of porcine neutrophils. FEBS Lett;377:345348.
  • 146
    Kudo K., Nonokawa D., Li J., Shiraishi S. (2002) Synthesis of optically active alicyclic polyimides from a chiral, nonracemic dianhydride. J PolymSci Part A: PolymChem;40:40384044.
  • 147
    Nafie L.A., Cheng J.C., Stephens P.J. (1975) Vibrational circular dichroism of 2,2,2-trifluoro-1-phenylethanol. J Am Chem Soc;97:38423843.
  • 148
    Nafie L.A., Keiderling T.A., Stephens P.J. (1976) Vibrational circular dichroism. J Am Chem Soc;98:27152723.
  • 149
    Keiderling T.A., Stephens P.J. (1976) Vibrational circular dichroism of overtone and combination bands. Chem Phys Lett;41:4648.
  • 150
    Keiderling T.A., Stephens P.J. (1977) Vibrational circular dichroism of dimethyl tartrate. A coupled oscillator. J Am Chem Soc;99:80618062.
  • 151
    Stephens P.J., Devlin F.J., Pan J.-J. (2008) The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality;20:643663.
  • 152
    Chen G.-C., Polavarapu P.L., Weibel S. (1994) New design for Fourier transform infrared vibrational circular dichroism spectrometers. Appl Spectrosc;48:12181223.
  • 153
    Yoo R.K., Croatto P.V., Wang B., Keiderling T.A. (1991) A method for the determination of the zero-path-difference position in a fourier transform infrared spectrometer: application to magnetic vibrational circular dichroism. Appl Spectrosc;45:231236.
  • 154
    Reetz M.T., Kuhling K.M., Hinrichs H., Deege A. (2000) Circular dichroism as a detection method in the screening of enantioselective catalysts. Chirality;12:479482.
  • 155
    Drake A.F., Gould J.M., Mason S.F. (1980) Simultaneous monitoring of ligh-absorption and optical activity in the liquid chromatography of chiral substance. J Chromatogr;202:239245.
  • 156
    Salvadori P., Rosini C., Bertucci C. (1984) Circular dichroic detection in the HPLC of chiral molecules: direct determination of elution orders. J Org Chem;49:50505054.
  • 157
    Salvadori P., Bertucci C., Rosini C. (1991) Circular dichroism detection in HPLC. Chirality;3:376385.
  • 158
    Goodall D.M. (1993) Chiral analysis based on polarimetric detection. Trends Anal Chem;12:177184.
  • 159
    Brandl F., Pustet N., Mannschreck A. (1999) Applications of a novel type of detector for liquid chromatography of chiral compounds. Int Lab;29:10C15C.
  • 160
    Gergely A., Zsila F., Horva′th P., Szász G. (1999) Determination of absolute configuration of ketamine enantiomers by HPLC-CD-UV technique. Chirality;11:741744.
  • 161
    Gergely A., Szász G., Szentesi A., Gyimesi-Forrás K., Kökösi J., Szegvári D., Veress G. (2006) Evaluation of CD detection in an HPLC system for analysis of DHEA and related steroids. Anal Bioanal Chem;384:15061510.
  • 162
    Bertucci C., Andrisano V., Cavrini V., Castiglioni E. (2000) Reliable assay of extreme enantiomeric purity values by a new circular dichroism based HPLC detection system. Chirality;12:8492.
  • 163
    Khalifeh K., Ranjbar B., Khajeh K., Naderi-Manesh H., Sadeghi M., Gharavi S. (2007) A stopped-flow fluorescence study of the native and modified lysozyme. Biologia;62:258264.
  • 164
    Noppert A., Gast K., Zirwer D., Damaschun G. (1998) Initial hydrophobic collapse is not necessary for folding RNase A. Folding & Design;3:213221.
  • 165
    Clarke D.T., Doig A.J., Stapeley B.J., Jones G.R. (1999) The alpha-helix folds on a millisecond time scale. Proc Natl Acad Sci USA;96:72327237.
  • 166
    Bayley P.M. (1981) Stopped-flow circular dichroism techniques: scope and limitations. Prog Biophys Mol Biol;37:149180.
  • 167
    Kuwajima K., Fasman G.D. (1996) Stopped-Flow CD in Circular Dichroism and the Conformational Analysis of Biomolecules. New York, USA: Plenum Press.
  • 168
    Wallace B.A. (2000) Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures. J Synchrotron Radiat;7:289295.
  • 169
    Wallace B.A., Janes W.R. (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol;5:567571.
  • 170
    Khalifeh K., Ranjbar B. (2005) A novel application of quantum dots as a tool for storage of CD spectra data in proteomics. Med Hypotheses;65:821822.
  • 171
    Lees J.G., Wallace B.A. (2002) Synchrotron radiation circular dichroism and conventional circular dichroism spectroscopy: A comparison. Spectroscopy;16:121125.
  • 172
    Wallace B.A. (2000) Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nat Struct Biol;7:708709.
  • 173
    Sutherland J.C., Desmond E.J., Takacs P.Z. (1980) Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm. Nucl Instr Methods;172:195199.
  • 174
    Wallace B.A., Wien F., Miles A.J., Lees J.G., Hoffmann S.V., Evans P., Wistowc G.J., Slingsby C. (2004) Biomedical applications of synchrotron radiation circular dichroism spectroscopy: Identification of mutant proteins associated with disease and development of a reference database for fold motifs. Faraday Discuss;126:237243.
  • 175
    Cascio M., Wallace B.A. (1994) Red- and blue-shifting in the circular dichroism spectra of polypeptides due to dipole effects. Protein Pept Lett;1:136140.
  • 176
    Cascio M., Wallace B.A. (1995) Effects of local environment on the circular dichroism spectra of polypeptides. Anal Biochem;227:90100.
  • 177
    Blundell T.L., Mizuguchi K. (2000) Structural genomics: an overview. Prog Biophys Mol Biology;73:289295.
  • 178
    Rodi D.J., Janes R.W., Sangasnee H.J., Soares A., Holton R.A., Wallace B.A., Makowski L. (1999) Screening of a library of phage-displayed peptides identifies human Bcl-2 as a Taxol-binding protein. J Mol Biol;285:197203.
  • 179
    Milesa A.J., Wallace B.A. (2006) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev;35:3951.
  • 180
    Thulstrup P.W., Brask J., Jensen K.J., Larsen E. (2005) Synchrotron radiation circular dichroism spectroscopy: Applied to metmyoglobin and a 4-α-helix bundle carboprotein. Biopolymers;78:4652.
  • 181
    Gekko K., Yonehara R., Sakurada Y., Matsuo K. (2005) Structure analyses of biomolecules using a synchrotron radiation circular dichroism spectrophotometer. J Elec Spec Rel Phen;144147: 295–297.
  • 182
    Lewis J.W., Goldbeck R.A., Kligler D.S. (1992) Time-resolved circular dichroism spectroscopy: experiment, theory, and applications to biological systems. J Phys Chem;96:52435254.
  • 183
    Werner E. (2007) All systems go. Nature;446:493494.