SEARCH

SEARCH BY CITATION

References

  • 1
    LaBonte J., Lebbos J., Kirkpatrick P. (2003) Enfuvirtide. Nat Rev Drug Discov;2:345346.
  • 2
    Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham P.R., Weiss R.A., Axel R. (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell;47:333348.
  • 3
    Berger E.A., Murphy P.M., Farber J.M. (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol;17:657700.
  • 4
    Palani A., Tagat J.R. (2006) Discovery and development of small-molecule chemokine coreceptor CCR5 antagonists. J Med Chem;49:28512857.
  • 5
    Shiraishi M., Aramaki Y., Seto M., Imoto H., Nishikawa Y., Kanzaki N., Okamoto M., Sawada H., Nishimura O., Baba M., Fujino M. (2000) Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. J Med Chem;43:20492063.
  • 6
    Palani A., Shapiro S., Clader J.W., Greenlee W.J., Cox K., Strizki J., Endres M., Baroudy B.M. (2001) Discovery of 4-[(Z)-(4-bromophenyl)- (ethoxyimino)methyl]-1′-[(2,4-dimethyl-3- pyridinyl)carbonyl]-4′-methyl-1,4′- bipiperidine N-oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem;44:33393342.
  • 7
    Tagat J.R., McCombie S.W., Steensma R.W., Lin S., Nazareno D.V., Baroudy B., Vantuno N., Xu S., Liu J. (2001) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. I: 2(S)-methyl piperazine as a key pharmacophore element. Bioorg Med Chem Lett;11:21432146.
  • 8
    Wood A., Armour D. (2005) The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog Med Chem;43:239271.
  • 9
    Maeda K., Yoshimura K., Shibayama S., Habashita H., Tada H., Sagawa K., Miyakawa T., Aoki M., Fukushima D., Mitsuya H. (2001) Novel low molecular weight spirodiketopiperazine derivatives potently inhibit R5 HIV-1 infection through their antagonistic effects on CCR5. J Biol Chem;276:3519435200.
  • 10
    Mills S.G., DeMartino J.A. (2004) Chemokine receptor-directed agents as novel anti-HIV-1 therapies. Curr Top Med Chem;4:10171033.
  • 11
    Vapnik V., Chapelle O. (2000) Bounds on error expectation for support vector machines. Neural Comput;12:20132036.
  • 12
    Chen H.F. (2008) Computational study of histamine H3-receptor antagonist with support vector machines and three dimension quantitative structure activity relationship methods. Anal Chim Acta;624:203209.
  • 13
    Chen H.F. (2008) Computational study of the binding mode of epidermal growth factor receptor kinase inhibitors. Chem Biol Drug Des;71:434446.
  • 14
    Chen H.F. (2008) Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression. Anal Chim Acta;609:2436.
  • 15
    Chen H.F., Wu M.Y., Wang Z., Wei D.Q. (2007) Insight into the metabolism rate of quinone analogues from molecular dynamics simulation and 3D-QSMR methods. Chem Biol Drug Des;70:290301.
  • 16
    Yao X.J., Panaye A., Doucet J.P., Zhang R.S., Chen H.F., Liu M.C., Hu Z.D., Fan B.T. (2004) Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J Chem Inf Comput Sci;44:12571266.
  • 17
    Debnath A.K. (2003) Generation of predictive pharmacophore models for CCR5 antagonists: study with piperidine- and piperazine-based compounds as a new class of HIV-1 entry inhibitors. J Med Chem;46:45014515.
  • 18
    Cristianini N., Shawe-Taylor J. (2000) An Introduction to Support Vector Machines. Cambridge, UK: Cambridge University Press.
  • 19
    Joachims T. (2002) Learning to Classify Text Using Support Vector Machines: Methods, Theory, and Algorithms. Norwell: Kluwer.
  • 20
    Schölkopf B., Smola A. (2002) Learning with Kernels. Cambridge, MA: MIT Press.
  • 21
    Herbrich R. (2002) Learning Kernel Classifiers. Cambridge, MA: MIT Press.
  • 22
    Hsu C.W., Lin C.J. (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw;13:415425.
  • 23
    Clark M., Cramer R.D., Van Opdenbosh N. (1989) The tripos force field. J Comput Chem;10:9821012.
  • 24
    Cho S.J., Tropsha A. (1995) Cross-validated R2-guided region selection for comparative molecular field analysis: a simple method to achieve consistent results. J Med Chem;38:10601066.
  • 25
    Cramer R.D., Patterson D.E., Bunce J.D. (1988) Comparative molecular field analysis (CoMFA). 1.effect of shape on binding of steroids to carrier proteins. J Am Chem Soc;110:59595967.
  • 26
    Boyd D.B. (1990) Successes of Computer-Assisted Molecular Dessign. New York: VCH Publishers.
  • 27
    Clark M., Cramer R.D. (1993) The probability of chance correlation using partial least squares (PLS). Quant Struct-Act Relat;12:137145.
  • 28
    Bohm M., Stürzebecher J., Klebe G. (1999) Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem;42:458477.
  • 29
    Klebe G., Abraham U., Mietzner T. (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem;37:41304146.
  • 30
    Stanton D.T., Jurs P.C. (1990) Development and use of charged partial surface area descriptors in computer-assisted quantitative structure-property relationship studies. Anal Chem;62:23232329.
  • 31
    Raichurkar A.V., Kulkarni V.M. (2003) Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA. J Med Chem;46:44194427.
  • 32
    Leach A.R. (2001) Molecular Modelling Principles and Applications. London: Henry Ling LTd Press.
  • 33
    Keerthi S.S., Lin C.J. (2003) Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput;15:16671689.
  • 34
    Macchiarulo A., De Luca L., Costantino G., Barreca M.L., Gitto R., Pellicciari R., Chimirri A. (2004) QSAR study of anticonvulsant negative allosteric modulators of the AMPA receptor. J Med Chem;47:18601863.