• 1
    Stern E., Muccioli G.G., Millet R., Goossens J.F., Farce A., Chavatte P., Poupaert J.H., Lambert D.M., Depreux P., Henichart J. (2006) Novel 4-Oxo-1,4-dihydroquinoline-3-carboxamide derivatives as new CB2 cannabinoid receptors agonists: synthesis, pharmacological properties and molecular modeling. J Med Chem;49:7079.
  • 2
    Mechoulam R. (1986) Cannabinoids as Therapeutic Agents. Boca Raton: CRC Press.
  • 3
    Zlas J., Stark H., Seligman J., Levy R., Werker E., Breuer A., Mechoulam R. (1993) Early medical use of cannabis. Nature;363:215215.
  • 4
    Leopold I.H., Duzman E. (1986) Observations on the pharmacology of glaucoma. Annu Rev Pharmacol Toxicol;26:401426.
  • 5
    Devane W.A., Dysarz F.A., Johnson M.R., Melvin L.S., Howlett A.C. (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol;34:605613.
  • 6
    Munro S., Thomas K.L., Abu-Shaar M. (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature;365:6165.
  • 7
    Schatz A.R., Koh W.S., Kaminski N.E. (1993) Δ9-Tetrahydrocannabinol selectively inhibits T-cell dependent humoral immune responses through direct inhibition of accessory T-cell function. Immunopharmacology;26:129137.
  • 8
    Condie R., Herring A., Koh W.S., Lee M., Kaminski N.E. (1996) Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2. J Biol Chem;271:1317513183.
  • 9
    Klein T.W., Lane B., Newton C.A., Friedman H. (2000) The cannabinoid system and cytokine network. Proc Soc Exp Biol Med;225:18.
  • 10
    Gautham K.R., Norbert E.K. (2006) Cannabinoid-mediated elevation of intracellular calcium: a structure-activity relationship. J Pharmacol Exp Ther;317:820829.
  • 11
    Honorio K.M., Garratt R.C., Polikatpov I., Andricopulo A.D. (2007) 3D QSAR comparative molecular field analysis on nonsteroidal farnesoid X receptor activators. J Mol Graph Model;25:921927.
  • 12
    Alves C.N., Macedo L.G.M., Honório K.M., Camargo A.J., Santos L.S., Jardim I.N., Barata L.E.S., Da Silva A.B.F. (2002) A Structure-Activity Relationship (SAR) study of neolignan compounds with anti-schistosomiasis activity. J Braz Chem Soc;13:300307.
  • 13
    Camargo A.J., Mercadante R., Honório K.M., Alves C.N., Da Silva A.B.F. (2002) A structure–activity relationship (SAR) study of synthetic neolignans and related compounds with biological activity against Escherichia coli. J Mol Struct (Theochem);583:105116.
  • 14
    Weber K.C., Honório K.M., Da Silva S.L., Mercadante R., Da Silva A.B.F. (2005) Selection of quantum chemical descriptors by chemometric methods in the study of antioxidant activity of flavonoid compounds. Int J Quantum Chem;103:731737.
  • 15
    Ferreira M.M.C. (2002) Multivariate QSAR. J Braz Chem Soc;13:742753.
  • 16
    Alexander G., Alexander T. (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des;16:357369.
  • 17
    Bucinski A., Zielinski H., Halina K. (2004) Artificial neural networks for prediction of antioxidant capacity of cruciferous sprouts. Trends Food Sci Technol;15:161169.
  • 18
    Miguel M., Facundo P., Francisco J.G., Teresa S., Wladimiro D., Marıa J.C., Angel V. (2004) Artificial neural networks and linear discriminant analysis: a valuable combination in the selection of new antibacterial compounds. J Chem Inf Comput Sci;44:10311041.
  • 19
    Schneider G., Wrede P. (1998) Artificial neural networks for computer-based molecular design. Prog Biophys Mol Biol;70:175222.
  • 20
    Zupan J., Gasteiger J. (1991) Neural networks: a new method for solving chemical problems or just a passing phase? Anal Chim Acta;248:l30.
  • 21
    Fernandez C., Soria E., Martın J.D., Serrano A.J. (2006) Neural networks for animal science applications: two case studies. Exp Sys App;31:444450.
  • 22
    Jalali-Heravi M., Masoum S., Shahbazikhah P. (2004) Simulation of 13C nuclear magnetic resonance spectra of lignin compounds using principal component analysis and artificial neural networks. J Magn Reson;171:176185.
  • 23
    Byvatov E., Fechner U., Sadowski J., Schneider G. (2003) Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci;43:18821889.
  • 24
    Ma L., Cheng C., Liu X., Zhao Y., Wang A., Herdewijn P. (2004) A neural network for predicting the stability of RNA/DNA hybrid duplexes. Chemom Intell Lab Syst;70:123128.
  • 25
    Niwa T. (2004) Prediction of biological targets using probabilistic neural networks and atom-type descriptors. J Med Chem;47:26452650.
  • 26
    Taskinen J., Yliruusi J. (2003) Prediction of physicochemical properties based on neural network modelling. Adv Drug Deliv Rev;55:11631183.
  • 27
    Niculescu S.P. (2003) Artificial neural networks and genetic algorithms in QSAR. J Mol Struct (Theochem);622:7183.
  • 28
    Hemmateenejad B., Safarpour M.A., Taghavi F. (2003) Application of ab initio theory for the prediction of acidity constants of some 1-hydroxy-9,10-anthraquinone derivatives using genetic neural network. J Mol Struct (Theochem);635:183190.
  • 29
    Ros F., Pintore M., Chretien J.R. (2002) Molecular descriptor selection combining genetic algorithms and fuzzy logic: application to database mining procedures. Chemom Intell Lab Syst;63:1526.
  • 30
    Honorio K.M., Da Silva A.B.F. (2005) A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds. J Mol Model;11:200209.
  • 31
    Mechoulam R. (1973) Marijuana: Chemistry, Pharmacology, Metabolism and Clinical Effects. New York: Academic Press.
  • 32
    Petersen R.C. (1980) Marijuana Research Findings. Maryland: Department of Health and Human Services.
  • 33
    Mechoulam R. (1970) Marihuana chemistry. Science;168:11591166.
  • 34
    Da Silva A.B.F., Trsic M. (1995) Theoretical and conformational studies of a series of cannabinoids. J Mol Struct;356:247256.
  • 35
    Razdan R.K. (1986) Structure-activity relationships in cannabinoids. Pharmacol Rev;38:75149.
  • 36
    Bishop C.M. (1995) Neural Networks for Pattern Recognition. Oxford: Oxford University Press.
  • 37
    Mandal U., Gowda V., Ghosh A., Bose A., Bhaumik U., Chatterjee B., Pal T.K. (2008) Optimization of metformin HCl 500 mg sustained release matrix tablets using artificial neural network (ANN) based on multilayer perceptrons (MLP) model. Chem Pharm Bull;56:150155.
  • 38
    Wang L., Fu X. (2005) Data Mining with Computational Intelligence. Berlin: Springer-Verlag.
  • 39
    Ripley B.D. (1996) Pattern Recognition and Neural Networks. Cambridge: Cambridge University Press.
  • 40
    Haykin S. (1994) Neural Networks: a Comprehensive Foundation. New York: Macmillan.
  • 41
    Cramer R.D. III, Bunce J.D., Patterson D.E. (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat;7:1825.
  • 42
    Wold S. (1978) Cross-validatory estimation of the number of components in factor and principal components models. Technometrics;4:397405.
  • 43
    Terfloth L., Gasteiger J. (2001) Neural networks and genetic algorithms in drug design. Drug Discov Today;6:S102S108.
  • 44
    Marini F., Magrì A.L., Bucci R., Magrì A.D. (2006) Authentication of Italian CDO wines by class-modeling techniques. Chemom Intell Lab Syst;83:99113.
  • 45
    Gemperline P. (2005) Practical Guide to Chemometrics. Boca Raton: CRC Press.
  • 46
    Gupta S., Matthew S., Abreu P.M., Aires-de-Sousa J. (2006) QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties. Biol Med Chem;14:11991206.
  • 47
    Tokutaka H., Yoshihara K., Fujimura K., Obu-Cann K., Iwamoto K. (1999) Application of self-organizing maps to chemical analysis. Appl Surf Sci;144:5966.
  • 48
    Vander Heyden Y., Vankeerberghen P., Novic M., Zupan J., Massart D.L. (2000) The application of Kohonen neural networks to diagnose calibration problems in atomic absorption spectrometry. Talanta;51:455466.
  • 49
    Maia D.R.J., Balbinot L., Poppi R.J., De Paoli M.A. (2003) Effect of conducting carbon black on the photostabilization of injection molded poly(propylene-co-ethylene) containing TiO2. Polym Degrad Stab;82:8998.
  • 50
    Fidêncio P.H., Ruisánchez I., Poppi R.J. (2001) Application of artificial neural networks to the classification of soils from Sao Paulo state using near-infrared spectroscopy. Analyst;126:21942200.
  • 51
    Mazzatorta P., Vracko M., Jezierska A., Benfenati E. (2003) Modeling toxicity by using supervised Kohonen Neural Networks. J Chem Inf Comput Sci;43:485492.
  • 52
    Molfetta F.A., Angelotti W.F.D., Romero R.A.F., Montanari C.A., Da Silva A.B.F. (2008) A neural networks study of quinone compounds with trypanocidal activity. J Mol Model;14:975985.
  • 53
    Zupan J., Novic M., Ruisánchez I. (1997) Kohonen and counterpropagation artificial neural networks in analytical chemistry. Chemom Intell Lab Syst;38:123.