Structure and Activity of CPNGRC: A Modified CD13/APN Peptidic Homing Motif


Corresponding author: Leigh A. Plesniak,


Asn-Gly-Arg peptides have been designed as vehicles for the delivery of chemotherapeutics, magnetic resonance imaging contrast agents, and fluorescence labels to tumor cells, and cardiac angiogenic tissue. Specificity is derived via an interaction with aminopeptidase N, also known as CD13, a cell surface receptor that is highly expressed in angiogenic tissue. Peptides containing the CNGRC homing sequence tethered to a pro-apoptotic peptide sequence have the ability to specifically induce apoptosis in tumor cells. We have now identified a modification to the Asn-Gly-Arg homing sequence motif that improves overall binding affinity to aminopeptidase N. Through the addition of a proline residue, the new peptide with sequence, CPNGRC, inhibits aminopeptidase N proteolytic activity with an IC50 of 10 μm, a value that is 30-fold lower than that for CNGRC. Both peptides are cyclized via a disulfide bridge between cysteines. Steady-state kinetic experiments suggest that efficient aminopeptidase N inhibition is achieved through the highly cooperative binding of two molecules of CPNGRC. We have used NMR-derived structural constraints for the elucidation of the solution structures CNGRC and CPNGRC. Resulting structures of CNGRC and CPNGRC have significant differences in the backbone torsion angles, which may contribute to the enhanced binding affinity and demonstrated enzyme inhibition by CPNGRC.