SEARCH

SEARCH BY CITATION

References

  • 1
    Prince A.L., Yin C.C., Enos M.E., Felices M., Berg L.J. (2009) The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev;228:115131.
  • 2
    Sahu N., August A. (2009) ITK inhibitors in inflammation, immune-mediated disorders. Curr Top Med Chem;9:690703.
  • 3
    Readinger J.A., Schiralli G.M., Jiang J.K., Thomas C.J., August A., Henderson A.J., Schwartzberg P.L. (2008) Selective targeting of ITK blocks multiple steps of HIV replication. Proc Sci Natl Acad USA;105:66846689.
  • 4
    Joseph R.E., Fulton D.B., Andreotti A.H. (2007) Mechanism and functional significance of Itk autophosphorylation. J Mol Biol;373:12811292.
  • 5
    Joseph R.E., Min L., Andreotti A.H. (2007) The linker between SH2 and kinase domains positively regulates catalysis of the Tec family kinases. Biochemistry;46:54555462.
  • 6
    Joseph R.E., Severin A., Min L., Fulton D.B., Andreotti A.H. (2009) SH2-dependent autophosphorylation within the Tec family kinase Itk. J Mol Biol;391:164177.
  • 7
    Severin A., Joseph R.E., Boyken S., Fulton D.B., Andreotti A.H. (2009) Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. J Mol Biol;387:726743.
  • 8
    Heyeck S.D., Wilcox H.M., Bunnell S.C., Berg L.J. (1997) Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J Biol Chem;272:2540125408.
  • 9
    Brown K., Long J.M., Vial S.C., Dedi N., Dunster N.J., Renwick S.B., Tanner A.J., Frantz J.D., Fleming M.A., Cheetham G.M. (2004) Crystal structures of interleukin-2 tyrosine kinase and their implications for the design of selective inhibitors. J Biol Chem;279:1872718732.
  • 10
    Faivre S., Demetri G., Sargent W., Raymond E. (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov;6:734745.
  • 11
    Karaman M.W., Herrgard S., Treiber D.K., Gallant P., Atteridge C.E., Campbell B.T., Chan K.W. et al. (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol;26:127132.
  • 12
    Das J., Furch J.A., Liu C., Moquin R.V., Lin J., Spergel S.H., McIntyre K.W. et al. (2006) Discovery and SAR of 2-amino-5-(thioaryl)thiazoles as potent and selective Itk inhibitors. Bioorg Med Chem Lett;16:37063712.
  • 13
    Lin T.A., McIntyre K.W., Das J., Liu C., O’Day K.D., Penhallow B., Hung C.Y. et al. (2004) Selective Itk inhibitors block T-cell activation and murine lung inflammation. Biochemistry;43:1105611062.
  • 14
    Boyd E., Brookfield F., Georges G., Goller B., Huensch S., Rueger P., Rueth M., Scheiblich S., Schuell C., Von Saal Der W., Warne J., Weigand S. (2006) Preparation of novel phthalazinone derivatives as Aurora-A kinase inhibitors for use against illnesses such as cancer. Patent Application WO 2006032518 A1.
  • 15
    Goldstein D.M., Rueth M. (2007) Methods of inhibiting BTK and SYK protein kinases using (pyrazolylamino)phthalazines and their preparation. Patent Application US 2007219195 A1.
  • 16
    Shaw D., Wang S.M., Villasenor A.G., Tsing S., Walter D., Browner M.F., Barnett J., Kuglstatter A. (2008) The crystal structure of JNK2 reveals conformational flexibility in the MAP kinase insert and indicates its involvement in the regulation of catalytic activity. J Mol Biol;383:885893.
  • 17
    Fabian M.A., Biggs W.H. III, Treiber D.K., Atteridge C.E., Azimioara M.D., Benedetti M.G., Carter T.A. et al. (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol;23:329336.
  • 18
    Otwinowski Z., Minor W. (1997) Processing of X-ray diffraction data collected in oscillation mode. In: CarterC.W.J., SweetR.M., editors. Macromolecular Crystallography, part A. New York: Academic Press; p. 307326.
  • 19
    McCoy A.J., Grosse-Kunstleve R.W., Storoni L.C., Read R.J. (2005) Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr;61:458464.
  • 20
    Murshudov G.N., Vagin A.A., Dodson E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr;53:240255.
  • 21
    Gerber P.R. (1992) Peptide mechanics: a force field for peptides and proteins working with entire residues as small unites. Biopolymers;32:10031017.
  • 22
    Kuglstatter A., Villasenor A.G., Shaw D., Lee S.W., Tsing S., Niu L., Song K.W., Barnett J.W., Browner M.F. (2007) Edge Cutting: IL-1 receptor-associated kinase 4 structures reveal novel features and multiple conformations. J Immunol;178:26412645.
  • 23
    Schalk-Hihi C., Ma H.C., Struble G.T., Bayoumy S., Williams R., Devine E., Petrounia I.P., Mezzasalma T., Zeng L., Schubert C., Grasberger B., Springer B.A., Deckman I.C. (2007) Protein engineering of the colony-stimulating factor-1 receptor kinase domain for structural studies. J Biol Chem;282:40854093.
  • 24
    Longenecker K.L., Garrard S.M., Sheffield P.J., Derewenda Z.S. (2001) Protein crystallization by rational mutagenesis of surface residues: Lys to Ala mutations promote crystallization of RhoGDI. Acta Crystallogr D Biol Crystallogr;57:679688.
  • 25
    Stover C., Mayhew M.P., Holden M.J., Howard A., Gallagher D.T. (2000) Crystallization and 1.1-A diffraction of chorismate lyase from Escherichia coli. J Struct Biol;129:9699.
  • 26
    Cowan-Jacob S.W., Mobitz H., Fabbro D. (2009) Structural biology contributions to tyrosine kinase drug discovery. Cell Opin Curr Biol;21:280287.
  • 27
    Huse M., Kuriyan J. (2002) The conformational plasticity of protein kinases. Cell;109:275282.
  • 28
    Jacobs M.D., Caron P.R., Hare B.J. (2008) Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: structure of lck/imatinib complex. Proteins;70:14511460.
  • 29
    Xu W., Doshi A., Lei M., Eck M.J., Harrison S.C. (1999) Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell;3:629638.
  • 30
    Schindler T., Sicheri F., Pico A., Gazit A., Levitzki A., Kuriyan J. (1999) Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol Cell;3:639648.
  • 31
    Das J., Liu C., Moquin R.V., Lin J., Furch J.A., Spergel S.H., Doweyko A.M. et al. (2006) Discovery, SAR of 2-amino-5-[(thiomethyl)aryl]thiazoles as potent and selective Itk inhibitors. Bioorg Med Chem Lett;16:24112415.
  • 32
    Cook B.N., Bentzien J., White A., Nemoto P.A., Wang J., Man C.C., Soleymanzadeh F., Khine H.H., Kashem M.A., Kugler S.Z. Jr, Wolak J.P., Roth G.P., De L.S., Pullen S.S., Takahashi H. (2009) Discovery of potent inhibitors of interleukin-2 inducible T-cell kinase (ITK) through structure-based drug design. Bioorg Med Chem Lett;19:773777.
  • 33
    Riether D., Zindell R., Kowalski J.A., Cook B.N., Bentzien J., Lombaert S.D., Thomson D. et al. (2009) 5-Aminomethylbenzimidazoles as potent ITK antagonists. Bioorg Med Chem Lett;19:15881591.
  • 34
    Snow R.J., Abeywardane A., Campbell S., Lord J., Kashem M.A., Khine H.H., King J. et al. (2007) Hit-to-lead studies on benzimidazole inhibitors of ITK: discovery of a novel class of kinase inhibitors. Bioorg Med Chem Lett;17:36603665.
  • 35
    Villasenor A.G., Wong A., Shao A., Garg A., Kuglstatter A., Harris S.F. (2010) Acoustic matrix microseeding: improving protein crystal growth with minimal chemical bias. Acta Crystallogr D;66:568576.