SEARCH

SEARCH BY CITATION

References

  • 1
    Reinaldo T. (2003) Antimalarial drug discovery: old and new approaches. J Exp Biol;206:37353744.
  • 2
    Comley J., Yeates C., Frend T. (1995) Antipneumocystis activity of 17C91, a prodrug of atovaquone. Antimicrob Agents Chemother;39:22172219.
  • 3
    Testa B., Mayer J. (2003) Hydrolysis in Drug and Prodrug Metabolism-Chemistry, Biochemistry and Enzymology. Zurich: Wiley-VHCA.
  • 4
    Testa B., Mayer J.M. (2001) Concepts in prodrug design to overcome pharmacokinetic problems. In: TestaB., Van De WaterbeemdH., FolkersG., GuyR., editors. Pharmacokinetic Optimization in Drug Research: Biological, Physiochemical and Computational Strategies. Zurich: Wiley-VHCA; pp. 8595.
  • 5
    Wang W., Jiang J., Ballard C.E., Wang B. (1999) Prodrug approaches in the improved delivery of peptide drugs. Curr Pharm Design;5:265287.
  • 6
    Karaman R. (2008) Analysis of Menger’s ‘spatiotemporal hypothesis. Tet Lett;49:59986002.
  • 7
    Karaman R. (2009) Reevaluation of Bruice’s proximity orientation. Tet Lett;50:452456.
  • 8
    Karaman R. (2009) A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in the lactonization of the trimethyl lock system. Bioorg Chem;37:1125.
  • 9
    Karaman R. (2009) Accelerations in the lactonization of trimethyl lock systems are due to proximity orientation and not to strain effects. Res Lett Org Chem; doi: 10.1155/2009/240253.
  • 10
    Karaman R. (2009) The Effective Molarity (EM) Puzzle in Proton Transfer Reactions. Bioorg Chem;37:106110.
  • 11
    Karaman R. (2009) Cleavage of Menger’s Aliphatic Amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct (Theochem);910:2733.
  • 12
    Karaman R. (2009) The gem-Disubstituent Effect-Computational Study that Exposes the Relevance of Existing Theoretical Models. Tet Lett;50:60836087.
  • 13
    Karaman R. (2010) Effects of substitution on the Effective Molarity (EM) for five membered ring-closure reactions-a computational approach. J Mol Struct (Theochem);939:69.
  • 14
    Karaman R. (2009) Analyzing Kirby’s amine olefin – a model for amino-acid ammonia lyases. Tet Lett;50:73047309.
  • 15
    Karaman R. (2010) The Effective Molarity (EM) Puzzle in Intramolecular Ring-Closing Reactions. J Mol Struct (Theochem);940:7075.
  • 16
    Milstien S., Cohen L.A. (1970) Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc;92:43774382.
  • 17
    Milstien S., Cohen L.A. (1970) Rate acceleration by stereopopulation control: models for enzyme action. Proc Natl Acad Sci U S A;67:11431147.
  • 18
    Milstien S., Cohen L.A. (1972) Stereopopulation control. I. Rate enhancement in the lactonizations of o-hydroxyhydrocinnamic acids. J Am Chem Soc;94:91589165.
  • 19
    Winans R.E., Wilcox C.F. Jr (1976) Comparison of stereopopulation control with conventional steric effects in lactonization of hydrocoumarinic acids. J Am Chem Soc;98:42814285.
  • 20
    Dorigo A.E., Houk K.N. (1987) The origin of proximity effects on reactivity: a modified MM2 model for the rates of acid-catalyzed lactonizations of hydroxy acids. J Am Chem Soc;109:36983708.
  • 21
    Houk K.N., Tucker J.A., Dorigo A.E. (1990) Quantitative modeling of proximity effects on organic reactivity. Acc Chem Res;23:107113.
  • 22
    Menger F.M. (1985) On the source of intramolecular and enzymatic reactivity. Acc Chem Res;18:128134.
  • 23
    Menger F.M., Chow J.F., Kaiserman H., Vasquez P.C. (1983) Directionality of proton transfer in solution. Three systems of known angularity. J Am Chem Soc;105:49965002.
  • 24
    Menger F.M. (1983) Directionality of organic reactions in solution. Tetrahedron;39:10131040.
  • 25
    Menger F.M., Grossman J., Liotta D.C. (1983) Transition-state pliability in nitrogen-to-nitrogen proton transfer. J Org Chem;48:905907.
  • 26
    Menger F.M., Galloway A.L., Musaev D.G. (2003) Relationship between rate and distance. Chem Comm;9:23702371.
  • 27
    Menger F.M. (2005) An alternative view of enzyme catalysis. Pure Appl Chem;77:18731886.
  • 28
    Brown R.F., Van Gulick N.M. (1956) The geminal alkyl effect on the rates of ring closure of bromobutylamines. J Org Chem;21:10461049.
  • 29
    Galli C., Mandolini L. (2000) The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem:31173125. and references therein.
  • 30
    Bruice T.C., Pandit U.K. (1960) The effect of geminal substitution ring size and rotamer distribution on the intramolecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J Am Chem Soc;82:58585865.
  • 31
    Bruice T.C., Pandit U.K. (1960) Intramolecular models depicting the kinetic importance of “Fit” in enzymatic catalysis. Proc Natl Acad Sci U S A;46:402404.
  • 32
    Kirby A.J. (1997) Efficiency of proton transfer catalysis in models and enzymes. Acc Chem Res;30:290296.
  • 33
    Brown C.J., Kirby A.J. (1997) Efficiency of proton transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of dialkyl acetals of benzaldehyde. J Chem Soc Perkin Trans;2:10811093.
  • 34
    Craze G.-A., Kirby A.J. (1974) The role of carboxy-group in intramolecular catalysis of acetal hydrolysis. The hydrolysis of substituted 2-methoxymethoxybenzoic acids. J Chem Soc Perkin Trans;2:6166.
  • 35
    Barber S.E., Dean K.E.S., Kirby A. (1999) A mechanism for efficient proton-transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of 1-arylethyl ethers of salicylic acid. Can J Chem;77:792801.
  • 36
    Asaad N., Davies J.E., Hodgson D.R.W., Kirby A.J. (2005) The search for efficient intramolecular proton transfer from carbon: the kinetically silent intramolecular general base-catalyzed elimination reaction of o-phenyl 8-dimethylamino-1-naphthaldoximes. J. Phys. Org. Chem.;18:101109.
  • 37
    Kirby A.J., Parkinson A. (1994) Most efficient intramolecular general acid catalysis of acetal hydrolysis by the carboxy group. J Chem Soc Chem Commun:707708.
  • 38
    Kirby A.J., Lima M.F., De Silva D., Roussev C.D., Nome F. (2006) Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. J Am Chem Soc;128:1694416952.
  • 39
    Hartwell E., Hodgson D.R.W., Kirby A.J. (2000) Exploring the limits of efficiency of proton-transfer catalysis in models and enzymes. J Am Chem Soc;122:93269327.
  • 40
    Kirby A.J., Williams N.H. (1994) Efficient intramolecular general acid catalysis of enol ether hydrolysis. Hydrogen-bonding stabilization of the transition state for proton transfer to carbon. J Chem Soc, Perkin Trans;2:643648.
  • 41
    Kirby A.J., Williams N.H. (1991) Efficient intramolecular general acid catalysis of vinyl ether hydrolysis by the neighboring carboxylic acid group. J Chem Soc Chem Commun:16431644.
  • 42
    Casewit C.J., Colwell K.S., Rappé A.K. (1992) Application of a universal force field to main group compounds. J Am Chem Soc;114:1004610053.
  • 43
    Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. (1985) AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc;107:39023909.
  • 44
    Murrell J.N., Laidler K.J. (1968) Symmetries of activated complexes. Trans Faraday Soc;64:371377.
  • 45
    Muller K. (1980) Reaction paths on multidimensional energy hypersurfaces. Angew Chem Int Ed Engl;19:113.
  • 46
    Cancès E., Mennucci B., Tomasi J. (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys;107:30323041.
  • 47
    Mennucci B., Tomasi J. (1997) Continuum solvation models: A new approach to the problem of solute's charge distribution and cavity boundaries. J Chem Phys;106:5151.
  • 48
    Mennucci B., Cancès E., Tomasi J. (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: Theoretical bases, computational implementation, and numerical applications. Journal of Physical Chemistry B;101:1050610517.
  • 49
    Tomasi J., Mennucci B., Cancès E. (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. Journal of Molecular Structure-Theochem;464:211226.
  • 50
    Enthalpic energy of 5 kcal/mol was needed to rotate the carboxyl group such that the attack angle increases from 48° to 88°.
  • 51
    Fife T.H., Przystas T.J. (1979) Intramolecular general acid catalysis in the hydrolysis of acetals with aliphatic alcohol leaving groups. J Am Chem Soc;101:12021210.
  • 52
    Kirby A.J. (1980) Effective molarities for intramolecular reactions. Adv Phys Org Chem;17:183278.