SEARCH

SEARCH BY CITATION

References

  • 1
    Gaynes R., Edwards J.R. (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis;41:848854.
  • 2
    Maragakis L.L., Perl T.M. (2008) Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis;46:12541263.
  • 3
    Rice L.B. (2006) Challenges in identifying new antimicrobial agents effective for treating infections with Acinetobacter baumannii and Pseudomonas aeruginosa. Clin Infect Dis;43(Suppl 2):S100S105.
  • 4
    Hancock R.E. (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis;27(Suppl 1):S93S99.
  • 5
    Garza-Gonzalez E., Llaca-Diaz J.M., Bosques-Padilla F.J., Gonzalez G.M. (2010) Prevalence of multidrug-resistant bacteria at a tertiary-care teaching hospital in Mexico: special focus on Acinetobacter baumannii. Chemotherapy;56:275279.
  • 6
    Hancock R.E., Lehrer R. (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol;16:8288.
  • 7
    Hodges R.S., Jiang Z., Whitehurst J., Mant C.T. (in press) Development of antimicrobial peptides as therapeutic agents. In: GadS., EventhalM., editors. Development of Therapeutic Agents, Handbook in Pharmaceutical Sciences. Hoboken, NJ: John Wiley and Sons.
  • 8
    Chen Y., Mant C.T., Farmer S.W., Hancock R.E., Vasil M.L., Hodges R.S. (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem;280:1231612329.
  • 9
    Hawrani A., Howe R.A., Walsh T.R., Dempsey C.E. (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem;283:1863618645.
  • 10
    Chen Y., Vasil A.I., Rehaume L., Mant C.T., Burns J.L., Vasil M.L., Hancock R.E., Hodges R.S. (2006) Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des;67:162173.
  • 11
    Chen Y., Guarnieri M.T., Vasil A.I., Vasil M.L., Mant C.T., Hodges R.S. (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother;51:13981406.
  • 12
    Jiang Z., Vasil A.I., Hale J.D., Hancock R.E., Vasil M.L., Hodges R.S. (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers (Peptide Science);90:369383.
  • 13
    Jiang Z., Kullberg B.J., van der Lee H., Vasil A.I., Hale J.D., Mant C.T., Hancock R.E.W., Vasil M.L., Netea M.G., Hodges R.S. (2008) Effects of Hydrophobicity on the Antifungal Activity of a-Helical Antimicrobial Peptides. Chem Biol Drug Des;72:483495.
  • 14
    Jiang Z., Hggins M.P., Whitehurst J., Kisich K.O., Voskuil M.I., Hodges R.S. (2011) Anti-tuberculosis activity of alpha-helical antimicrobial peptides: de novo designed L- and D-enantiomers versus L- and D-LL-37. Protein Pept Lett; PMID: 20858205. (in press).
  • 15
    Chen Y., Mant C.T., Hodges R.S. (2007) Preparative reversed-phase high-performance liquid chromatography collection efficiency for an antimicrobial peptide on columns of varying diameters (1mm to 9.4mm I.D.). J Chromatogr A;1140:112120.
  • 16
    Lee D.L., Mant C.T., Hodges R.S. (2003) A novel method to measure self-association of small amphipathic molecules: temperature profiling in reversed-phase chromatography. J Biol Chem;278:2291822927.
  • 17
    Eisenberg D., Weiss R.M., Terwilliger T.C. (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature;299:371374.
  • 18
    Carver T., Bleasby A. (2003) The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics;19:18371843.
  • 19
    Kovacs J.M., Mant C.T., Hodges R.S. (2006) Determination of intrinsic hydrophilicity/hydrophobicity of amino acid side chains in peptides in the absence of nearest-neighbor or conformational effects. Biopolymers (Peptide Science);84:283297.
  • 20
    Mant C.T., Kovacs J.M., Kim H.M., Pollock D.D., Hodges R.S. (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers (Peptide Science);92:573595.
  • 21
    Holloway B.W. (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol;13:572581.
  • 22
    Bjorn M.J., Vasil M.L., Sadoff J.C., Iglewski B.H. (1977) Incidence of exotoxin production by Pseudomonas species. Infect Immun;16:362366.
  • 23
    Pavlovskis O.R., Pollack M., Callahan L.T. III, Iglewski B.H. (1977) Passive protection by antitoxin in experimental Pseudomonas aeruginosa burn infections. Infect Immun;18:596602.
  • 24
    Frost L.S., Paranchych W. (1977) Composition and molecular weight of pili purified from Pseudomonas aeruginosa K. J Bacteriol;131:259269.
  • 25
    Watts T.H., Kay C.M., Paranchych W. (1982) Dissociation and characterization of pilin isolated from Pseudomonas aeruginosa strains PAK and PAO. Can J Biochem;60:867872.
  • 26
    Rahme L.G., Ausubel F.M., Cao H., Drenkard E., Goumnerov B.C., Lau G.W., Mahajan-Miklos S., Plotnikova J., Tan M.W., Tsongalis J., Walendziewicz C.L., Tompkins R.G. (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A;97:88158821.
  • 27
    Stieritz D.D., Holder I.A. (1975) Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: description of a burned mouse model. J Infect Dis;131:688691.
  • 28
    Chen H.C., Brown J.H., Morell J.L., Huang C.M. (1988) Synthetic magainin analogues with improved antimicrobial activity. FEBS Lett;236:462466.
  • 29
    Mor A., Nicolas P. (1994) The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem;269:19341939.
  • 30
    Blazyk J., Wiegand R., Klein J., Hammer J., Epand R.M., Epand R.F., Maloy W.L., Kari U.P. (2001) A novel linear amphipathic beta-sheet cationic antimicrobial peptide with enhanced selectivity for bacterial lipids. J Biol Chem;276:2789927906.
  • 31
    Chekmenev E.Y., Vollmar B.S., Forseth K.T., Manion M.N., Jones S.M., Wagner T.J., Endicott R.M. et al. (2006) Investigating molecular recognition and biological function at interfaces using piscidins, antimicrobial peptides from fish. Biochim Biophys Acta;1758:13591372.
  • 32
    Gibson B.W., Tang D.Z., Mandrell R., Kelly M., Spindel E.R. (1991) Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem;266:2310323111.
  • 33
    Conlon J.M., Sonnevend A., Davidson C., Smith D.D., Nielsen P.F. (2004) The ascaphins: a family of antimicrobial peptides from the skin secretions of the most primitive extant frog, Ascaphus truei. Biochem Biophys Res Commun;320:170175.
  • 34
    Shin S.Y., Hahm K.S. (2004) A short alpha-helical antimicrobial peptide with antibacterial selectivity. Biotechnol Lett;26:735739.
  • 35
    Tencza S.B., Douglass J.P., Creighton D.J. Jr, Montelaro R.C., Mietzner T.A. (1997) Novel antimicrobial peptides derived from human immunodeficiency virus type 1 and other lentivirus transmembrane proteins. Antimicrob Agents Chemother;41:23942398.
  • 36
    Chen Y., Mant C.T., Hodges R.S. (2002) Determination of stereochemistry stability coefficients of amino acid side-chains in an amphipathic alpha-helix. J Pept Res;59:1833.
  • 37
    Zhou N.E., Mant C.T., Hodges R.S. (1990) Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices. Pept Res;3:820.
  • 38
    Mant C.T., Chen Y., Hodges R.S. (2003) Temperature profiling of polypeptides in reversed-phase liquid chromatography. I. Monitoring of dimerization and unfolding of amphipathic alpha-helical peptides. J Chromatogr A;1009:2943.
  • 39
    Mant C.T., Tripet B., Hodges R.S. (2003) Temperature profiling of polypeptides in reversed-phase liquid chromatography. II. Monitoring of folding and stability of two-stranded alpha-helical coiled-coils. J Chromatogr A;1009:4559.
  • 40
    Dolan J.W. (2002) Temperature selectivity in reversed-phase high performance liquid chromatography. J Chromatogr A;965:195205.
  • 41
    Yang Y.X., Feng Y., Wang B.Y., Wu Q. (2004) PCR-based site-specific mutagenesis of peptide antibiotics FALL-39 and its biologic activities. Acta Pharmacol Sin;25:239245.
  • 42
    Dathe M., Nikolenko H., Meyer J., Beyermann M., Bienert M. (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett;501:146150.
  • 43
    Ahn H.S., Cho W., Kang S.H., Ko S.S., Park M.S., Cho H., Lee K.H. (2006) Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study. Peptides;27:640648.
  • 44
    Jiang Z., Vasil A.I., Vasil M.L., Hodges R.S. (2010) Effect of Net Positive Charge and Charge Distribution on the Polar Face of Amphipathic α-Helical Antimicrobial Peptides on their Biological and Biophysical Properties. In LeblM.., editors. Breaking Away: Proceedings of the 21st American Peptide Symposium (2009), Bloomington, IN, USA: American Peptide Society, pp. 266267.
  • 45
    Asthana N., Yadav S.P., Ghosh J.K. (2004) Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. J Biol Chem;279:5504255050.
  • 46
    Conlon J.M., Ahmed E., Condamine E. (2009) Antimicrobial properties of brevinin-2-related peptide and its analogs: efficacy against multidrug-resistant Acinetobacter baumannii. Chem Biol Drug Des;74:488493.
  • 47
    Avrahami D., Oren Z., Shai Y. (2001) Effect of multiple aliphatic amino acids substitutions on the structure, function, and mode of action of diastereomeric membrane active peptides. Biochemistry;40:1259112603.