Site-Specific Free Energy Changes in Proteins upon Ligand Binding by Nuclear Magnetic Resonance: Ca2+-Displacement by Ln3+ in a Ca2+-Binding Protein from Entamoeba histolytica


Corresponding author: Kandala V. R. Chary,


The study of protein–ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature of such interaction and determining the associated binding affinities are of utmost importance. Nuclear magnetic resonance has become a powerful tool in deriving information related to such interactions in proteins. Nuclear magnetic resonance data provide the site-specific information even in the case of proteins having multiple-binding sites and populations of respective species. In this communication, we set out to use such information to derive the associated microscopic binding constants.