Get access

2D- and 3D-Quantitative Structure-Activity Relationship Studies for a Series of Phenazine N,N’-Dioxide as Antitumour Agents

Authors

  • Jonathan Da Cunha,

    1. Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
    Search for more papers by this author
  • María Laura Lavaggi,

    1. Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
    Search for more papers by this author
  • María Inés Abasolo,

    Corresponding author
    1. Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
    Search for more papers by this author
  • Hugo Cerecetto,

    Corresponding author
    1. Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
    Search for more papers by this author
  • Mercedes González

    Corresponding author
    1. Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias-Facultad de Química, Universidad de la República, Montevideo, Uruguay
    Search for more papers by this author

Corresponding authors: María Inés Abasolo, iabasolo@yahoo.com.ar, Hugo Cerecetto, hcerecet@fq.edu.uy and Mercedes González, megonzal@fq.edu.uy

Abstract

Hypoxic regions of tumours are associated with increased resistance to radiation and chemotherapy. Nevertheless, hypoxia has been used as a tool for specific activation of some antitumour prodrugs, named bioreductive agents. Phenazine dioxides are an example of such bioreductive prodrugs. Our 2D-quantitative structure activity relationship studies established that phenazine dioxides electronic and lipophilic descriptors are related to survival fraction in oxia or in hypoxia. Additionally, statistically significant models, derived by partial least squares, were obtained between survival fraction in oxia and comparative molecular field analysis standard model (r2 = 0.755, q2 = 0.505 and F = 26.70) or comparative molecular similarity indices analysis-combined steric and electrostatic fields (r2 = 0.757, q2 = 0.527 and F = 14.93), and survival fraction in hypoxia and comparative molecular field analysis standard model (r2 = 0.736, q2 = 0.521 and F = 18.63) or comparative molecular similarity indices analysis-hydrogen bond acceptor field (r2 = 0.858, q2 = 0.737 and F = 27.19). Categorical classification was used for the biological parameter selective cytotoxicity emerging also good models, derived by soft independent modelling of class analogy, with both comparative molecular field analysis standard model (96% of overall classification accuracy) and comparative molecular similarity indices analysis-steric field (92% of overall classification accuracy). 2D- and 3D-quantitative structure-activity relationships models provided important insights into the chemical and structural basis involved in the molecular recognition process of these phenazines as bioreductive agents and should be useful for the design of new structurally related analogues with improved potency.

Ancillary