• 1
    Bajorath J., Peltason L., Wawer M., Guha R., Lajiness M.S., Van Drie J.H. (2009) Navigating structure-activity landscapes. Drug Discov Today;14:698705.
  • 2
    Wassermann A.M., Wawer M., Bajorath J. (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem;53:82098223.
  • 3
    Maggiora G.M. (2006) On outliers and activity cliffs – why QSAR often disappoints. J Chem Inf Model;46:1535.
  • 4
    Maggiora G., Lajiness M., Bajorath J., Organizers. The emerging concepts of activity landscapes and activity cliffs and their role in drug research. Symposium at the Fall 2010 National Meeting of the American Chemical Society, August 22–26, 2010.
  • 5
    Peltason L., Bajorath J. (2009) Systematic computational analysis of structure-activity relationships: concepts, challenges and recent advances. Future Med Chem;1:451466.
  • 6
    Peltason L., Bajorath J. (2007) SAR index: quantifying the nature of structure-activity relationships. J Med Chem;50:55715578.
  • 7
    Guha R., Van Drie J.H. (2008) Structure-activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model;48:646658.
  • 8
    Wawer M., Peltason L., Weskamp N., Teckentrup A., Bajorath J. (2008) Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices. J Med Chem;51:60756084.
  • 9
    Wawer M., Peltason L., Bajorath J. (2009) Elucidation of structure-activity relationship pathways in biological screening data. J Med Chem;52:10751080.
  • 10
    Wawer M., Bajorath J. (2009) Systematic extraction of structure-activity relationship information from biological screening data. ChemMedChem;4:14311438.
  • 11
    Kennedy J., Eberhart R.C. (1995) Particle swarm optimization. Proceedings of the IEEE International Conference Neural Networks IV (ICN95), 19421948.
  • 12
    Namasivayam V., Iyer P., Bajorath J. (2011) Extraction of discontinuous structure-activity relationships from compound data sets through particle swarm optimization. J Chem Inf Model;51:15451551.
  • 13
    Eberhart R.C., Shi Y. (1998) Comparison between genetic algorithms and particle swarm optimization. Evolutionary Programming VII, Lecture Notes in Computer Science; 1447:611616.
  • 14
    Meissner M., Schmuker M., Schneider G. (2006) Optimized particle swarm optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics;7:125.
  • 15
    Namasivayam V., Günther R. (2007) PSO@Autodock3: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des;70:475484.
  • 16
    Hartenfeller M., Proschak E., Schüller A., Schneider G. (2008) Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug Des;72:1626.
  • 17
    Kennedy J., Eberhart R.C. (1997) A discrete binary version of the particle swarm algorithm. Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics; 41044109.
  • 18
    Shi Y., Eberhart R.C. (1998) Parameter selection in particle swarm optimization, Proceedings of the Seventh Annual Conference on Evolutionary Programming ; 591600.
  • 19
    Clerc M. (2006) Stagnation analysis in particle swarm optimization or what happens when nothing happens. Technical Report CSM-460. Colchester: Department of Computer Science, University of Essex. ISSN: 1744-8050.
  • 20
    Wawer M., Sun S., Bajorath J. (2010) Computational characterization of SAR microenvironments in high-throughput screening data. Int J High Throughput Screen;1:1527.