SEARCH

SEARCH BY CITATION

References

  • 1
    Serpell L.C. (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta;1502:1630.
  • 2
    Adessi C., Soto C. (2002) Beta-sheet breaker strategy for the treatment of Alzheimer’s disease. Drug Dev Res;56:184193.
  • 3
    Estrada L.D., Soto C. (2006) Inhibition of protein misfolding and aggregation by small rationally-designed peptides. Curr Pharm Des;12:25572567.
  • 4
    Soto C., Castano M.E., Frangione B., Inestrosa N.C. (1995) The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J Biol Chem;270:30633067.
  • 5
    Tomaselli S., Esposito V., Vangone P., van Nuland N.A., Bonvin A.M., Guerrini R., Tancredi T., Temussi P.A., Picone D. (2006) The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. ChemBioChem;7:257267.
  • 6
    Ghanta J., Shen C.L., Kiessling L.L., Murphy R.M. (1996) A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem;271:2952529528.
  • 7
    Gordon D., Meredith S.C. (2003) Probing the role of backbone hydrogen bonding in β-amyloid fibrils with inhibitor peptides containing ester bonds at alternate positions. Biochemistry;42:475485.
  • 8
    Soto C. (1999) Plaque busters: strategies to inhibit amyloid formation in Alzheimer’s disease. Mol Med Today;5:343350.
  • 9
    Giordano C., Masi A., Pizzini A., Sansone A., Consalvi V., Chiaraluce R., Lucente G. (2009) Synthesis and activity of fibrillogenesis peptide inhibitors related to the 17–21 β-amyloid sequence. Eur J Med Chem;44:179189.
  • 10
    Adessi C., Frossard M.J., Boissard C., Fraga S., Bieler S., Rucole T., Vilbois F., Robinson S.M., Mutters M., Banks W.A., Soto C. (2003) Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer’s disease. J Biol Chem;278:1390513911.
  • 11
    Terzi E., Holzemann G., Seelig J. (1994) Reversible random coil-beta-sheet transition of the Alzheimer beta-amyloid fragment (25–35). Biochemistry;33:13451350.
  • 12
    Pike C.J., Walencewicz-Wasserman A.J., Kosmoski J., Cribbs D.H., Glabe C.G., Cotman C.W. (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem;64:253265.
  • 13
    Kubo T., Kumagae Y., Miller C.A., Kaneko I. (2003) Beta-amyloid racemized at the Ser26 residue in the brains of patients with Alzheimer disease: implications in the pathogenesis of Alzheimer disease. J Neuropathol Exp Neurol;62:248259.
  • 14
    Kaminsky Y.G., Marlatt M.W., Smith M.A., Kosenko E.A. (2010) Subcellular and metabolic examination of amyloid-beta peptides in Alzheimer disease pathogenesis: evidence for Abeta(25–35). Exp Neurol;221:2637.
  • 15
    Campiglia P., Esposito C., Scrima M., Gomez-Monterrey I., Bertamino A., Grieco P., Novellino E., D’Ursi A.M. (2007) Conformational stability of Aβ-(25–35) in the presence of thiazolidine derivatives. Chem Biol Drug Des;69:111118.
  • 16
    Atherton E., Sheppard R.C. (1989) Solid Phase Synthesis – A Practical Approach. Oxford: IRL Press.
  • 17
    Brouwer A.J., Monnee M.C.F., Liskamp R.M.J. (2000) An efficient synthesis of N-protected β-aminoethanesulfonyl chlorides: versatile building blocks for the synthesis of oligopeptidosulfonamides. Synthesis;11:15791584.
  • 18
    Clarke T., Gillespie H.B., Weisshaus S.Z. (1933) Action of formaldehyde on amines and amino acids. J Am Chem Soc;55:45714587.
  • 19
    Naiki H., Higuchi K., Hosokawa M., Takeda T. (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye thioflavine T. Anal Biochem;177:244249.
  • 20
    Henry E.R., Hofrichter J. (1992) Singular value decomposition: application to analysis of experimental data. Methods Enzymol;210:129192.
  • 21
    Johnson W.C. Jr (1992) Analysis of circular dichroism spectra. Methods Enzymol;210:426447.
  • 22
    Ionescu R.M., Smith V.F., O’Neill J.C. Jr, Matthews C.R. (2000) Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles. Biochemistry;39:95409550.
  • 23
    Kuipers B.J.H., Gruppen H. (2007) Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. J Agric Food Chem;55:54455451.
  • 24
    Rest R.F. (1994) Methods measurement of human neutrophil respiratory burst activity during phagocytosis of bacteria. Methods Enzymol;236:119136.
  • 25
    Perczel A., Hollosi M. (1996) Turns. In: Fasman G.D., editor. Circular dichroism and the conformational analysis of biomolecules. New York, NY, USA: Plenum Press; p. 285380.
  • 26
    Venyaminov S.Y., Yang J.T. (1996) Determination of protein secondary structure. In: Fasman G.D., editor. Circular dichroism and the conformational analysis of biomolecules. New York, NY, USA: Plenum Press; p. 69107.
  • 27
    Goldsbury C., Frey P., Olivieri V., Aebi U., Müller S.A. (2005) Multiple assembly pathways underlie amyloid-β fibril polymorphisms. J Mol Biol;352:282298.
  • 28
    Moore R.A., Hayes S.F., Fischer E.R., Priola S.A. (2007) Amyloid formation via supramolecular peptide assemblies. Biochemistry;46:70797087.
  • 29
    Hashimoto M., Katakura M., Hossain S., Rahman A., Shimada T., Shido O. (2011) Docosahexaenoic acid withstands the Aβ 25–35-induced neurotoxicity in SH-SY5Y cells. J Nutr Biochem;22:2229.
  • 30
    Datki Z., Juhász A., Gálfi M., Soós K., Papp R., Zádori D., Penke B. (2003) Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res Bull;62:223229.
  • 31
    Qin L., Liu Y., Cooper C., Liu B., Wilson B., Hong J.S. (2002) Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem;83:973983.
  • 32
    Elgersma R.C., Meijneke T., De Jong R., Brower A.J., Postuma G., Dirk T.S., Rijkers D.T., Liskamp R.M. (2006) Synthesis and structural investigations of N-alkylated β-peptidosulfonamide-peptide hybrids of the amyloidogenic amylin(20–29) sequence: implications of supramolecular folding for the design of peptide-based bionanomaterials. Org Biomol Chem;4:35873597.
  • 33
    Santa-Maria I., Hernandez F., Moreno F.J., Avila J. (2007) Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation. Neurosci Lett;429:9194.
  • 34
    Martineau E., de Guzman J.M., Rodionova L., Kong X., Mayer P.M., Aman A.M. (2010) Investigation of the noncovalent interactions between anti-amyloid agents and amyloid β peptides by ESI-MS. J Am Soc Mass Spectrom;21:15061514.
  • 35
    Pasantes-Morales H., Hernández-Benítez R. (2010) Taurine and brain development: trophic or cytoprotective actions?. Neurochem Res;35:19391943.
  • 36
    Schaffer S.W., Azuma J., Mozaffari M. (2009) Role of antioxidant activity of taurine in diabetes. Can J Physiol Pharmacol;87:9199.
  • 37
    Schaffer S.W., Jong C.J., Ramila K.C., Azuma J. (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci;17(Suppl 1):S2.