SEARCH

SEARCH BY CITATION

References

  • 1
    Klein C., Vassilev L. (2004) Targeting the p53-MDM2 interaction to treat cancer. British J Cancer;91:14151419.
  • 2
    Vousden K.H., Lane D.P. (2007) p53 in health and disease. Nat Rev Mol Cell Biol;8:275283.
  • 3
    Harris S.L., Levine A.J. (2005) The p53 pathway: positive and negative feedback loops. Oncogene;24:28992908.
  • 4
    Toledo F., Wahl G.M., (2006) Regulating the p53 pathway : in vitro hypotheses, in vivo veritas. Nat Rev Cance;6:909923.
  • 5
    Chene P. (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer;3:102109.
  • 6
    Hollstein M., Sidransky D., Vogelstein B., Harris C.C. (1991) p53 mutations in human cancers. Science;253:4953.
  • 7
    Zheleva D.I., Lane D.P., Fischer P.M. (2003) The p53-Mdm2 pathway: targets for the development of new anticancer therapeutics. Mini-Rev Med Chem;3:257270.
  • 8
    Luke R.W.A., Hudson K., Hayward D.F., Fielding C., Cotton R., Best R., Giles M.B., Veldman M.H., Griffiths L.A., Jewsbury P.J., Breeze A.L., Embrey K.J. (1999) Design and synthesis of small molecule inhibitors of the MDM2-p53 interaction as potential anti-tumor agents. Proc Am Assoc Cancer Res;40:abs.: 4099.
  • 9
    Luke R.W.A., Jewsbury P.J, Cotton R. (2000) Preparation of amino acid and peptidyl piperazine-4-phenyl derivatives as inhibitors of the interaction between MDM2 and p53. PCT Int. Pat. Appl. Publ. WO 2000015657. Zeneca Ltd., UK.
  • 10
    Zhao J.H., Liu Z.H., Yin D.L., Chen J., Luo A.P., Wu M. (2001) Initial Evaluation of mdm2 Inhibitors Based on p53- mdm2 Complex Structure. Chin J Cancer;20:354357.
  • 11
    Zhao J., Wang M., Chen J., Wang A.L.X., Wu M., Yin D., Liu Z. (2002) The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53-HDM2 complex structure. Cancer Lett;183:6977.
  • 12
    Tovar C., Rosinski J., Filipovic Z., Higgins B., Kolinsky K., Hilton H., Zhao X., Vu B.T., Qing W., Packman K., Myklebost O., Heimbrook D.C., Vassilev L.T. (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A;103:18881893.
  • 13
    LaRusch G.A., Jackson M.W., Dunbar J.D., Warren R.S., Donner D.B., Mayo L.D. (2007) Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1alpha and Hdm2. Cancer Res;67:450454.
  • 14
    Pantoliano M.W., Petrella E.C., Kwasnoski J.D., Lobanov V.S., Myslik J., Graf E., Carver T., Asel E., Springer B.A., Lane P., Salemme F.R. (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen;6:429440.
  • 15
    Yap C.W., Li H., Ji Z.L., Chen Y.Z. (2007) ???????. Mini-Rev Med Chem;7:10971107.
  • 16
    Estrada E. (2008) How the parts organize in the whole? A top-down view of molecular descriptors and properties for QSAR and drug design. Mini-Rev Med Chem;8:213221.
  • 17
    Galatin P.S., Abraham D.J. (2001) QSAR: hydropathic analysis of inhibitors of the p53-mdm2 interaction. Proteins;45:169175.
  • 18
    Rong S., Hu C., Huang W., Hu Y. (2007) Pharmacophore Model Construction of p53-MDM2 Binding Inhibitors. Acta Phy Chim Sin;23:18151820.
  • 19
    Hemmateenejad B., Sanchooli M. (2007) Substituent electronic descriptors for fast QSAR/QSPR. J Chemometrics;21:96107.
  • 20
    Wan J., Zhang L., Yang G., Zhan C.G. (2004) Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory. J Chem Inf Comput Sci;44:20992105.
  • 21
    Draper N.R., Smith H. (1981) Applied Regression Analysis. New York: John Wiley&Sons.
  • 22
    Kubinyi H. (1996) Evolutionary Variable Selection in Regression and PLS Analyses. J Chemometrics;10:119133.
  • 23
    Mercader A.G., Duchowicz P.R., Fernández F.M., Castro E.A. (2008) Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories. Chemom Intell Lab Syst;92:138144.
  • 24
    Liu P., Long W. (2009) Current mathematical methods used in QSAR/QSPR studies. Int J Mol Sci;10:19781998.
  • 25
    Hardcastle I.R., Ahmed S.U., Atkins H., Calvert A.H., Curtin N.J., Farnie G., Golding B.T. et al. (2005) Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. Bioorg Med Chem Lett;15:15151520.
  • 26
    Hardcastle I.R., Ahmed S.U., Atkins H., Farnie G., Golding B.T., Griffin R.J., Guyenne S. et al. (2006) Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. J Med Chem;49:62096221.
  • 27
    Hardcastle I.R., Liu J., Valeur E., Watson A., Ahmed S.U., Blackburn T.J., Bennaceur K. et al. (2011) Isoindolinone inhibitors of the murine double minute 2 (MDM2)-p53 protein-protein interaction: structure-activity studies leading to improved potency. J Med Chem;54:12331243.
  • 28
    Duchowicz P.R., Castro E.A., Fernández F.M. (2006) Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies. MATCH Commun Math Comput Chem;55:179192.
  • 29
    Duchowicz P.R., Fernández M., Caballero J., Castro E.A., Fernández F.M. (2006) QSAR for non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem;14:58765889.
  • 30
    Vapnik V.N. (1995) The Nature of Statistical Learning Theory. Berlin: Springer.
  • 31
    Burges C.J.C. (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Data Min Know Discovery;2:121167.
  • 32
    Gong G. (1986) Cross-validation, the Jackknife, and the bootstrap: Excess error estimation in forward logistic regression. J Am Stat Assoc;81:108113.
  • 33
    Fawcett T. (2006) An introduction to ROC analysis. Pattern Recogn Lett;27:861874.
  • 34
    Clackson T., Wells J. (1995) A hot spot of binding energy in a hormone-receptor interface. Science;267:3386.