SEARCH

SEARCH BY CITATION

References

  • 1
    Gallo R.C., Sarin P.S., Gelmann E.P., Robert-Guroff M., Richardson E., Kalyanaraman V.S., Mann D., Sidhu G.D., Stahl R.E., Zolla-Pazner S., Leibowitch J., Popovic M. (1983) Isolation of human T-cell leukemia virus in acquired immunodeficiency syndrome (AIDS). Science;220:865867.
  • 2
    Barre-Sinoussi F., Chermann J.C., Rey F., Nugeyre M.T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vezinet-Brun F., Rouzioux C., Rozenbaum W., Montagnier L. (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science;220:868871.
  • 3
    Coffin J., Hasse A., Levy J.A., Montagnier L., Oroszlan S., Teich N., Temin H., Toyoshima K., Varmus H., Vogt P., Weiss R. (1986) Human immunodeficiency viruses (Letter). Science;232:697.
  • 4
    Johnston M.I., Hoth D.F. (1993) Present status and future prospects for HIV therapies. Science;260:12861293.
  • 5
    De Clerq E. (1995) Toward improved anti-HIV chemotherapy: therapeutic strategies for intervention with HIV infections. J Med Chem;38:24912517.
  • 6
    Fauci A.S. (1993) Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science;262:10111017.
  • 7
    Lapatto R., Blundell T., Hemmings A., Overington J., Wilderspin A.F., Wood S., Merson J.R., Whittle P.J., Danley D.E., Geoghegan K.F., Hawrylik S.J., Lee S.E., Scheld K.G., Hobart P.M. (1989) X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes. Nature;342:299302.
  • 8
    Navia M.A., Fitzgerald P.M., McKeever B.M., Leu C.T., Heimbach J.C., Herber W.K., Sigal I.S., Darke P.L., Springer J.P. (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature;337:615620.
  • 9
    Wlodawer A., Miller M., Jaskolski M., Sathyanarayana B.K., Baldwin E., Weber I.T., Selk L.M., Clawson L., Schneider J., Kent S.B. (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science;245:616621.
  • 10
    Velazquez-Campoy A., Muzammil S., Ohtaka H., Schön A., Vega S., Freire E. (2003) Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr Drug Targets Infect Disord;3:311328.
  • 11
    Rodríguez-Barrios F., Gago F. (2004) HIV protease inhibition: limited recent progress and advances in understanding current pitfalls. Curr Top Med Chem;4:9911007.
  • 12
    Kaushik-Basu N., Basu A., Harris D. (2008) Peptide inhibition of HIV-1: current status and future potential. BioDrugs;22:161175.
  • 13
    Mastrolorenzo A., Rusconi S., Scozzafava A., Barbaro G., Supuran C.T. (2007) Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem;14:27342748.
  • 14
    Roberts N.A., Martin J.A., Kinchington D., Broadhurst A.V., Craig J.C., Duncan I.B., Galpin S.A. et al. (1990) Rational design of peptide-based HIV proteinase inhibitors. Science;248:358361.
  • 15
    Ohta Y., Shinkai I. (1997) Saquinavir. Biorg Med Chem;5:465466.
  • 16
    FDA approves SQV/r. IAPAC Mon. 10, 39, 2004.
  • 17
    Vacca J.P., Dorsey B.D., Schleif W.A., Levin R.B., McDaniel S.L., Darke P.L., Zugay J. et al. (1994) l-735,524: an orally bioavailable HIV-1 protease inhibitor. Proc Natl Acad Sci USA;91:40964100.
  • 18
    Cressey T.R., Plipat N., Fregonese F., Chokephaibulkit K. (2007) Indinavir/ritonavir remains an important component of HAART for the treatment of HIV/AIDS, particularly in resource-limited settings. Expert Opin Drug Metab Toxicol;3:347361.
  • 19
    Kempf D.J., Sham H.L., Marsh K.C., Flentge C.A., Betebenner D., Green B.E., McDonald E. et al. (1998) Discovery of Ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J Med Chem;41:602617.
  • 20
    Gehlhaar D.K., Verkhivker G.M., Rejto P.A., Sherman C.J., Fogel D.B., Fogel L.J., Freer S.T. (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol;2:317324.
  • 21
    Shetty B.V., Kosa M.B., Khalil D.A., Webber S. (1996) Preclinical pharmacokinetics and distribution to tissue of AG1343, an inhibitor of human immunodeficiency virus type 1 protease. Antimicrob Agents Chemother;40:110114.
  • 22
    Patick A.K., Markowitz M., Appelt K., Wu B., Musick L., Kalish V., Kaldor S., Reich S., Ho D., Webber S. (1996) Antiviral and resistance studies of AG1343, an orally bioavailable inhibitor of human immunodeficiency virus protease. Antimicrob Agents Chemother;40:292297.
  • 23
    Sham H.L., Kempf D.J., Molla A., Marsh K.C., Kumar G.N., Chen C.-M., Kati W. et al. (1998) ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother;42:32183224.
  • 24
    Lyons F., Lechelt M., De Ruiter A. (2007) Steady-state lopinavir levels in third trimester of pregnancy. AIDS;21:10531054.
  • 25
    Navia M.A., Sato V.L., Tung R.D. (1995) Design of VX-478, a potent inhibitor of HIV protease. Int Antiviral News;3:143145.
  • 26
    Kim E.E., Baker C.T., Dwyer M.D., Murcko M.A., Rao B.G., Tung R.D., Navia M.A. (1995) Crystal structure of HIV-1 protease in complex with VX- 478, a potent and orally bioavailable inhibitor of the enzyme. J Am Chem Soc;117:11811182.
  • 27
    Hou T., Yu R. (2007) Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. J Med Chem;50:11771188.
  • 28
    Qazi N.A., Morlese J.F., Pozniak A.L. (2002) Lopinavir/ritonavir (ABT-378/r). Expert Opin Pharmacother;3:315327.
  • 29
    Schechter M., Nunes E.P. (2007) Monotherapy with lopinavir/ritonavir. Expert Opin Investig Drugs;16:735741.
  • 30
    Piliero P.J. (2002) Atazanavir: a novel HIV-1 protease inhibitor. Expert Opin Investig Drugs;11:12951301.
  • 31
    Klei H.E., Kish K., Lin P.F., Guo Q., Friborg J., Rose R.E., Zhang Y., Goldfarb V., Langley D.R., Wittekind M., Sheriff S. (2007) X-ray crystal structures of HIV-1 protease mutants complexed with atazanavir. J Virol 2007 Sep;81:95259535.
  • 32
    Poppe S.M., Slade D.E., Chong K.T., Hinshaw R.R., Pagano P.J., Markowitz M., Ho D.D., Mo H., Gorman R.R. 3rd, Dueweke T.J., Thaisrivongs S., Tarpley W.G. (1997) Antiviral activity of the dihydropyrone PNU-140690, a new nonpeptidic human immunodeficiency virus protease inhibitor. Antimicrob Agents Chemother;41:10581063.
  • 33
    De Mendoza C., Morello J., Garcia-Gasco P., Rodriguez-Novoa S., Soriano V. (2007) Tipranavir: a new protease inhibitor for the treatment of antiretroviral-experienced HIV-infected patients. Expert Opin Pharmacother;8:839850.
  • 34
    De Meyer S., Azijn H., Surleraux D., Jochmans D., Tahri A., Pauwels R., Wigerinck P., de Bethune M.P. (2005) TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother;49:23142321.
  • 35
    MacArthur R.D. (2007) Darunavir: promising initial results. Lancet;369:11431144.
  • 36
    Rosin C.D., Belew R.K., Morris G.M., Olson A.J., Goodsell D.S. (1999) Coevolutionary analysis of resistance-evading peptidomimetic inhibitors of HIV-1 protease. Proc Natl Acad Sci USA;96:13691374.
  • 37
    Wang W., Kollman P.A. (2001) Computational study of protein specificity: the molecular basis of HIV-1 protease drug resistance. Proc Natl Acad Sci USA;98:1493714942.
  • 38
    Velazquez-Campoy A., Muzammil S., Ohtaka H., Schön A., Vega S., Freire E. (2003) Structural and thermodynamic basis of resistance to HIV-1 protease inhibition: implications for inhibitor design. Curr Drug Targets Infect Disord;3:311328.
  • 39
    Ghosh A.K., Chapsal B.D., Weber I.T., Mitsuya H. (2008) Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance. Acc Chem Res;41:7886.
  • 40
    Broglia R., Levy Y., Tiana G. (2008) HIV-1 protease folding and the design of drugs which do not create resistance. Curr Opin Struct Biol;18:6066.
  • 41
    Jaskolski M., Tomasselli A.G., Sawyer T.K., Staples D.G., Heinrikson R.L., Schneider J., Kent S.B., Wlodawer A. (1991) Structure at 2.5-Å resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry;30:16001609.
  • 42
    Dohnálek J., Hašek J., Dušková J., Petroková H., Hradilek M., Souček M., Konvalinka J., Brynda J., Sedláček J., Fábry M. (2001) A distinct binding mode of a hydroxyethylamine isostere inhibitor of HIV-1 protease. Acta Crystalogr;D57:472476.
  • 43
    Dohnálek J., Hašek J., Dušková J., Petroková H., Hradilek M., Souček M., Konvalinka J., Brynda J., Sedláček J., Fábry M. (2002) Hydroxyethylamine isostere of an HIV-1 protease inhibitor prefers its amine to the hydroxyl group in binding to catalytic aspartates. J Med Chem;45:14321438.
  • 44
    Skálová T., Hašek J., Dohnálek J., Petroková H., Buchtelová E., Dušková J., Souček M., Majer P., Uhlíková T., Konvalinka J. (2003) An ethylenamine inhibitor binds tightly to both wild type and mutant HIV-1 proteases. Structure and energy study. J Med Chem;46:16361644.
  • 45
    Miller M., Schneider J., Sathyanarayana B.K., Toth M.V., Marshall G.R., Clawson L., Selk L., Kent S.B., Wlodawer A. (1989) Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 Å resolution. Science;246:11491152.
  • 46
    Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K., Feng Z. et al. (2002) The protein data bank. Acta Crystallogr;D58:899907.
  • 47
    Vondrasek J., Wlodawer A. (2002) HIVdb – a database of the structures of human immunodeficiency virus protease. Proteins: Struct Funct Genet;49:429431.
  • 48
    Stuk T.L., Haight A.R., Scarpetti D., Allen M.S., Menzia J.A., Robbins T.A., Parekh S.I., Langridge D.C., Tien J.-H.J., Pariza R.J., Kerdesky F.A. (1994) An efficient stereocontrolled strategy for the synthesis of hydroxyethylene dipeptide isosters. J Org Chem;59:40404041.
  • 49
    Kageyama S., Mimoto T., Murakawa Y., Nomizu M., Ford H. Jr, Shirasaka T., Gulnik S., Erickson J.W., Takada K., Hayashi H., Broder S., Kiso Y., Mitsuya H. (1993) In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine. Antimicrob Agents Chemother;37:810817.
  • 50
    Kuzmic P., Garcia-Echeveria C., Rich D.H. (1993) Stabilization of HIV proteinase dimer by bound substrate. Biochem Biophys Res Commun;194:301305.
  • 51
    North A.C.T., Philips D.C., Mathews F.S. (1968) A semi-empirical method of absorption correction. Acta Crystallogr;A24:351.
  • 52
    Frenz B.A. (1984) SDP-Structure Determination Package. Delft, Holland: Enraf-Nonius.
  • 53
    Otwinowski Z., Minor W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol;276:307326.
  • 54
    Sheldrick G.M. (2008) A short history of SHELX. Acta Crystallogr A;A64:112122.
  • 55
    Sheldrick G.M. (1993) SHELXL-93. Program for Crystal Structure Refinement. Germany: University of Göttingen.
  • 56
    Vickovic J. (1988) Crystal structure utility, a highly automatic and selective program for the calculation and presentation of geometrical parameters and their e.s.d.`s. J Appl Crystallogr;21:987990.
  • 57
    Bone R., Vacca J.P., Anderson P.S., Holloway M.K. (1991) X-ray crystal structure of the HIV protease complex with L-700, 417 an inhibitor with pseudo C2 symmetry. J Am Chem Soc;113:93829384.
  • 58
    Jones T.A., Kjeldgaard M. (1993) O-the Manual. Version 5.9. Sweden: Department of Molecular Biology, BMC, Uppsala University and Denmark: Department of Chemistry, Aarhus University.
  • 59
    Randad R.S., Lubkowska L., Silva A.M., Guerin D.M.A., Gulnik S.V., Yu B., Erickson J.W. (1996) Structure-based design of achiral, nonpeptidic hydroxybenzamide as a novel P2/P2′ replacement for the symmetry-based HIV protease inhibitors. Bioorg Med Chem;4:14711480.
  • 60
    Randad R.S., Lubkowska L, Bujacz A., Gulnik S.V. Yu B., Silva A., Munshi S., Lynch T.M., Clanton D.J., Bhat T.N., Erickson J.W. (1995) Structure-based design of achiral anthranilamides as a P2/P2′ surrogates for symmetry-based HIV protease inhibitors: design, synthesis, X-ray structure, enzyme inhibition and antiviral activity. Bioorg.Med.Chem.Letters;5:25572562.
  • 61
    Veerepandian B., Cooper J.B., Sali A., Blundell T.L., Rosati R.L., Dominy B.W., Damon D.B., Hoover D.J. (1992) Direct observation by X-ray analysis of the tetrahedral intermediate of aspartic proteinases. Protein Sci;1:322328.
  • 62
    Skálová T., Hašek J., Dohnálek J., Petroková H., Buchtelová E. (2002) Mutant HIV-1 protease complexed with tetrapeptide inhibitor. Acta Physica Polonica A;101:659663.
  • 63
    Petroková H., Skálová T., Dohnálek J., Dušková J., Buchtelová E., Souček M., Konvalinka J., Brynda J., Fábry J.M., Sedláček J., Hašek J. (2004) Role of hydroxyl group and R/S configuration of isostere in binding properties of HIV-1 protease inhibitors. Eur J Biochem;271:44514461.
  • 64
    Skálová T., Dohnálek J., Dušková J., Petroková H., Hradílek M., Souček M., Konvalinka J., Hašek J. (2006) HIV-1 protease mutations and inhibitor modifications monitored on a series of complexes. Structural basis for the effect of the A71V mutation on the active site. J Med Chem;49:57775784.
  • 65
    Dušková J., Dohnálek J., Skálová T., Petroková H., Vondráčkova E., Hradílek M., Konvalinka J., Souček M., Brynda J., Fábry M., Sedláček J., Hašek J. (2006) On the role of R-configuration of the reaction intermediate isostere in HIV-1 protease inhibitor binding X-ray structure at 2.0 Å resolution. Acta Crystallogr D Biol Crystallogr;D62:489497.
  • 66
    DeLano W.L. (2002) The PyMOL Molecular Graphics System DeLano Scientific. San Carlos, CA, USA. Available at: http://www.pymol.org.
  • 67
    Wallace A.C., Laskowski R.A., Thornton J.M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Prot Eng;8:127134.