SEARCH

SEARCH BY CITATION

References

  • 1
    Joshi H.C., Palacios M.J., McNamara L., Cleveland D.W. (1992) Gamma-tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature;356:8083.
  • 2
    Zheng Y., Jung M.K., Oakley B.R. (1991) Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell;65:817823.
  • 3
    Stearns T., Evans L., Kirschner M. (1991) Gamma-tubulin is a highly conserved component of the centrosome. Cell;65:825836.
  • 4
    Keating T.J., Borisy G.G. (2000) Immunostructural evidence for the template mechanism of microtubule nucleation. Nat Cell Biol;2:352357.
  • 5
    Wiese C., Zheng Y. (2000) A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. Nat Cell Biol;2:358364.
  • 6
    Moritz M., Braunfeld M.B., Guenebaut V., Heuser J., Agard D.A. (2000) Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol;2:365370.
  • 7
    Moritz M., Agard D.A. (2001) Gamma-tubulin complexes and microtubule nucleation. Curr Opin Struct Biol;11:174181.
  • 8
    Wise D.O., Krahe R., Oakley B.R. (2000) The gamma-tubulin gene family in humans. Genomics;67:164170.
  • 9
    Yuba-Kubo A., Kubo A., Hata M., Tsukita S. (2005) Gene knockout analysis of two gamma-tubulin isoforms in mice. Dev Biol;282:361373.
  • 10
    Marziale F., Pucciarelli S., Ballarini P., Melki R., Uzun A., Ilyin V.A., Detrich H.W. 3rd, Miceli C. (2008) Different roles of two gamma-tubulin isotypes in the cytoskeleton of the Antarctic ciliate Euplotes focardii: remodelling of interaction surfaces may enhance microtubule nucleation at low temperature. Febs J;275:53675382.
  • 11
    Katsetos C.D., Draberova E., Legido A., Draber P. (2009) Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. II. gamma-Tubulin. J Cell Physiol;221:514520.
  • 12
    Caracciolo V., D’Agostino L., Draberova E., Sladkova V., Crozier-Fitzgerald C., Agamanolis D.P., de Chadarevian J.P., Legido A., Giordano A., Draber P., Katsetos C.D. (2010) Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol;223:519529.
  • 13
    Zhou J., Giannakakou P. (2005) Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents;5:6571.
  • 14
    Dumontet C., Jordan M.A. (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov;9:790803.
  • 15
    Pettit G.R., Singh S.B., Hamel E., Lin C.M., Alberts D.S., Garcia-Kendall D. (1989) Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia;45:209211.
  • 16
    Bennett M.J., Barakat K., Huzil J.T., Tuszynski J., Schriemer D.C. (2010) Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem Biol;17:725734.
  • 17
    Huzil J.T., Chik J.K., Slysz G.W., Freedman H., Tuszynski J., Taylor R.E., Sackett D.L., Schriemer D.C. (2008) A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol;378:10161030.
  • 18
    Ye K., Ke Y., Keshava N., Shanks J., Kapp J.A., Tekmal R.R., Petros J., Joshi H.C. (1998) Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc Natl Acad Sci USA;95:16011606.
  • 19
    Martin M.A., Osmani S.A., Oakley B.R. (1997) The role of gamma-tubulin in mitotic spindle formation and cell cycle progression in Aspergillus nidulans. J Cell Sci;110(Pt 5):3633.
  • 20
    Oakley B.R., Oakley C.E., Yoon Y., Jung M.K. (1990) Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell;61:12891301.
  • 21
    Nayak T. (2008) Investigations of the Functions of Gamma-Tubulin in Cell Cycle Regulation in Aspergillus Nidulans. Columbus: Ohio State University.
  • 22
    Katsetos C.D., Reddy G., Draberova E., Smejkalova B., Del Valle L., Ashraf Q., Tadevosyan A. et al. (2006) Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines. J Neuropathol Exp Neurol;65:465477.
  • 23
    Katsetos C.D., Draberova E., Legido A., Dumontet C., Draber P. (2009) Tubulin targets in the pathobiology and therapy of glioblastoma multiforme. I. Class III beta-tubulin. J Cell Physiol;221:505513.
  • 24
    Katsetos C.D., Draberova E., Smejkalova B., Reddy G., Bertrand L., de Chadarevian J.P., Legido A., Nissanov J., Baas P.W., Draber P. (2007) Class III beta-tubulin and gamma-tubulin are co-expressed and form complexes in human glioblastoma cells. Neurochem Res;32:13871398.
  • 25
    Jemal A., Siegel R., Xu J., Ward E. (2010) Cancer statistics, 2010. CA Cancer J Clin;60:277300.
  • 26
    Clarke J., Butowski N., Chang S. (2010) Recent advances in therapy for glioblastoma. Arch Neurol;67:279283.
  • 27
    Johnson D.R., O’Neill B.P. (2011) Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol; Nov 2. Epub ahead of print. doi: 10.1007/s11060-011-0749-4.
  • 28
    Orsetti B., Nugoli M., Cervera N., Lasorsa L., Chuchana P., Ursule L., Nguyen C., Redon R., du Manoir S., Rodriguez C., Theillet C. (2004) Genomic and expression profiling of chromosome 17 in breast cancer reveals complex patterns of alterations and novel candidate genes. Cancer Res;64:64536460.
  • 29
    Liu T., Niu Y., Yu Y., Liu Y., Zhang F. (2009) Increased gamma-tubulin expression and P16INK4A promoter methylation occur together in preinvasive lesions and carcinomas of the breast. Ann Oncol;20:441448.
  • 30
    Niu Y., Liu T., Tse G.M., Sun B., Niu R., Li H.M., Wang H., Yang Y., Ye X., Wang Y., Yu Q., Zhang F. (2009) Increased expression of centrosomal alpha, gamma-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci;100:580587.
  • 31
    Aldaz H., Rice L.M., Stearns T., Agard D.A. (2005) Insights into microtubule nucleation from the crystal structure of human gamma-tubulin. Nature;435:523527.
  • 32
    Rice L.M., Montabana E.A., Agard D.A. (2008) The lattice as allosteric effector: structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule assembly. Proc Natl Acad Sci USA;105:53785383.
  • 33
    Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server. In: Walker J.M., editor. Protein Identification and Analysis Tools on the ExPASy Server. Totowa, NJ: Humana Press; p. 571607.
  • 34
    Yang M., Xi X., Yang P. (2008) Thermodynamic analysis of fluorescence enhancement and Quenching theory equations. Front Chem China;3:254261.
  • 35
    Lee J.C., Harrison D., Timasheff S.N. (1975) Interaction of vinblastine with calf brain microtubule protein. J Biol Chem;250:92769282.
  • 36
    Barakat K., Mane J., Friesen D., Tuszynski J. (2010) Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions. J Mol Graph Model;28:555568.
  • 37
    Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R.D., Kale L., Schulten K. (2005) Scalable molecular dynamics with NAMD. J Comput Chem;26:17811802.
  • 38
    Dolinsky T.J., Nielsen J.E., McCammon J.A., Baker N.A. (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res;32:W665W667.
  • 39
    Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins;65:712725.
  • 40
    Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R. et al. (2008) Amber 10. San Francisco: University of California.
  • 41
    Guex N., Peitsch M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis;18:27142723.
  • 42
    Meagher K.L., Redman L.T., Carlson H.A. (2003) Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem;24:10161025.
  • 43
    Barakat K., Tuszynski J. (2011) Relaxed complex scheme suggests novel inhibitors for the lyase activity of DNA polymerase beta. J Mol Graph Model;29:702716.
  • 44
    Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R. et al. (2010) Amber 11. San Francisco: University of California.
  • 45
    Ravelli R.B., Gigant B., Curmi P.A., Jourdain I., Lachkar S., Sobel A., Knossow M. (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature;428:198202.
  • 46
    Morris G.M., Goodsell D.S., Halliday R.S., Huey R., Hart W.E., Belew R.K., Olson A.J. (1998) Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. New York, USA: Wiley.
  • 47
    Gasteiger J., Marsili M. (1980) Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron;36:32193228.
  • 48
    Mane J.Y., Klobukowski M., Huzil J.T., Tuszynski J. (2008) Free energy calculations on the binding of colchicine and its derivatives with the alpha/beta-tubulin isoforms. J Chem Inf Model;48:18241832.
  • 49
    Dumont R., Brossi A., Chignell C.F., Quinn F.R., Suffness M. (1987) A novel synthesis of colchicide and analogues from thiocolchicine and congeners: reevaluation of colchicide as a potential antitumor agent. J Med Chem;30:732735.
  • 50
    Schaftenaar G., Noordik J.H. (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des;14:123134.
  • 51
    Humphrey W., Dalke A., Schulten K. (1996) VMD: visual molecular dynamics. J Mol Graph;14:3338, 27–38.
  • 52
    Baker N.A., Sept D., Joseph S., Holst M.J., McCammon J.A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA;98:1003710041.
  • 53
    Thompson J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res;22:46734680.
  • 54
    Lakowicz J.R. (1983) Principles of Fluorescence Spectroscopy. New York, USA: Plenum Press.
  • 55
    Banerjee M., Poddar A., Mitra G., Surolia A., Owa T., Bhattacharyya B. (2005) Sulfonamide drugs binding to the colchicine site of tubulin: thermodynamic analysis of the drug-tubulin interactions by isothermal titration calorimetry. J Med Chem;48:547555.
  • 56
    Sardar P.S., Maity S.S., Das L., Ghosh S. (2007) Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues. Biochemistry;46:1454414556.
  • 57
    Banerjee A. (1997) Differential effects of colchicine and its B-ring modified analog MTPT on the assembly-independent GTPase activity of purified beta-tubulin isoforms from bovine brain. Biochem Biophys Res Commun;231:698700.
  • 58
    Burns R.G. (1992) Analysis of the colchicine-binding site of beta-tubulin. FEBS Lett;297:205208.
  • 59
    Detrich H.W. 3rd, Williams R.C. Jr, Macdonald T.L., Wilson L., Puett D. (1981) Changes in the circular dichroic spectrum of colchicine associated with its binding to tubulin. Biochemistry;20:59996005.
  • 60
    Siemann D.W., Chaplin D.J., Walicke P.A. (2009) A review and update of the current status of the vasculature-disabling agent combretastatin-A4 phosphate (CA4P). Expert Opin Investig Drugs;18:189197.
  • 61
    Lin J.H., Perryman A.L., Schames J.R., McCammon J.A. (2002) Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc;124:56325633.
  • 62
    Amaro R.E., Baron R., McCammon J.A. (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des;22:693705.
  • 63
    Lin J.H., Perryman A.L., Schames J.R., McCammon J.A. (2003) The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers;68:4762.
  • 64
    Mohan V., Gibbs A.C., Cummings M.D., Jaeger E.P., DesJarlais R.L. (2005) Docking: successes and challenges. Curr Pharm Des;11:323333.
  • 65
    Shao J., Tanner S.W., Thompson N., Cheatham T.E. (2007) Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput;3:23122334.
  • 66
    Davies D.L., Bouldin D.W. (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell;1:224227.
  • 67
    Dyer N. (2009) Tubulin and its prokaryotic homologue FtsZ: a structural and functional comparison. Sci Prog;92:113137.
  • 68
    Raynaud-Messina B., Merdes A. (2007) Gamma-tubulin complexes and microtubule organization. Curr Opin Cell Biol;19:2430.
  • 69
    Torin Huzil J., Winter P., Johnson L., Weis A.L., Bakos T., Banerjee A., Luduena R.F., Damaraju S., Tuszynski J.A. (2010) Computational design and biological testing of highly cytotoxic colchicine ring A modifications. Chem Biol Drug Des;75:541550.
  • 70
    Alisaraie L., Tuszynski J.A. (2011) Determination of noscapine’s localization and interaction with the tubulin-alpha/beta heterodimer. Chem Biol Drug Des;78:535546.
  • 71
    Guillet V., Knibiehler M., Gregory-Pauron L., Remy M.H., Chemin C., Raynaud-Messina B., Bon C., Kollman J.M., Agard D.A., Merdes A., Mourey L. (2011) Crystal structure of gamma-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nat Struct Mol Biol;18:915919.
  • 72
    Inclan Y.F., Nogales E. (2001) Structural models for the self-assembly and microtubule interactions of gamma-, delta- and epsilon-tubulin. J Cell Sci;114:413422.