SEARCH

SEARCH BY CITATION

References

  • 1
    Chen Y.F., Lopez-Sanchez M., Savoy D.N., Billadeau D.D., Dow G.S., Kozikowski A.P. (2008) A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J Med Chem;51:34373448.
  • 2
    Dallavalle S., Cincinelli R., Nannei R., Merlini L., Morini G., Penco S., Pisano C., Vesci L., Barbarino M., Zuco V., De Cesare M., Zunino F. (2009) Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur J Med Chem;44:19001912.
  • 3
    Methot J.L., Chakravarty P.K., Chenard M., Close J., Cruz J.C., Dahlberg W.K., Fleming J. et al. (2008) Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg Med Chem Lett;18:973978.
  • 4
    Bressi J.C., De Jong R., Wu Y.Q., Jennings A.J., Brown J.W., O’Connell S., Tari L.L., Skene R.J., Vu P., Navre M., Cao X.D., Gangloff A.R. (2010) Benzimidazole and imidazole inhibitors of histone deacetylases: synthesis and biological activity. Bioorg Med Chem Lett;20:31383141.
  • 5
    Bressi J.C., Jennings A.J., Skene R., Wu Y.Q., Melkus R., De Jong R., O’Connell S., Grimshaw C.E., Navre M., Gangloff A.R. (2010) Exploration of the HDAC2 foot pocket: synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg Med Chem Lett;20:31423145.
  • 6
    Angibaud P., Van Emelen K., Decrane L., Van Brandt S., Ten Holte P., Pilatte I., Roux B. et al. (2010) Identification of a series of substituted 2-piperazinyl-5-pyrimidylhydroxamic acids as potent histone deacetylase inhibitors. Bioorg Med Chem Lett;20:294298.
  • 7
    Kozikowski A.P., Tapadar S., Luchini D.N., Kim K.H., Billadeau D.D. (2008) Use of the Nitrile Oxide Cycloaddition (NOC) Reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J Med Chem;51:43704373.
  • 8
    Tang H., Wang X.S., Huang X.P., Roth B.L., Butler K.V., Kozikowski A.P., Jung M., Tropsha A. (2009) Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. J Chem Inf Model;49:461476.
  • 9
    Choi E., Lee C., Park J.E., Seo J.J., Cho M., Kang J.S., Kim H.M., Park S.-K., Lee K., Han G. (2011) Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors. Bioorg Med Chem Lett;21:12181221.
  • 10
    Auzzas L., Larsson A., Matera R., Baraldi A., Deschênes-Simard B., Giannini G., Cabri W., Battistuzzi G., Gallo G., Ciacci A., Vesci L., Pisano C., Hanessian S. (2010) Non-natural macrocyclic inhibitors of histone deacetylases: design, synthesis, and activity. J Med Chem;53:83878399.
  • 11
    Bertrand P. (2010) Inside HDAC with HDAC inhibitors. Eur J Med Chem;45:20952116.
  • 12
    Methot J.L., Hamblett C.L., Mampreian D.M., Jung J., Harsch A., Szewczak A.A., Dahlbergt W.K. et al. (2008) SAR profiles of spirocyclic nicotinamide derived selective HDAC1/HDAC2 inhibitors(SHI-1:2). Bioorg Med Chem Lett;18:61046109.
  • 13
    Noh H., Oh E.Y., Seo J.Y., Yu M.R., Kim Y.O., Ha H., Lee H.B. (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-β1-induced renal injury. Am J Physiol Renal Physiol;297:F729F739.
  • 14
    Bolden J.E., Peart M.J., Johnstone R.W. (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Disc;5:769784.
  • 15
    Chen Y.D., Li H.F., Tang W.Q., Zhu C.C., Jiang Y.J., Zou J.W., Yu Q.S., You Q.D. (2009) 3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment. Eur J Med Chem;44:28682876.
  • 16
    Chen Y.-D., Jiang Y.-J., Zhou J.-W., Yu Q.-S., You Q.-D. (2008) Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling. J Mol Graph Model;26:11601168.
  • 17
    Butler K.V., Kalin J., Brochier C., Vistoli G., Langley B., Kozikowski A.P. (2010) Rational design and simple chemistry yield a superior, neuro protective HDAC6 inhibitor, tubastatin A. J Am Chem Soc;132:1084210846.
  • 18
    Thangapandian S., John S., Sakkiah S., Lee K.W. (2010) Ligand and structure based pharmacophore modeling to facilitat enovel histone deacetylase 8 inhibitor design. Eur J Med Chem;45:44094417.
  • 19
    Nagarajan S., Ahmed A., Choo H., Cho Y.S., Oh K.S., Lee B.H., Shin K.J., Pae A.N. (2011) 3D QSAR pharmacophore model based on diverse IKKβ inhibitors. J Mol Model;17:209218.
  • 20
    Lopez-Ramos M., Perruccio F. (2010) HPPD: ligand- and target-based virtual screening on a herbicide target. J Chem Inf Model;50:801814.
  • 21
    Lyne P.D. (2002) Structure-based virtual screening: an overview. Drug Discov Today;7:10471055.
  • 22
    Singh N., Cheve G., Ferguson D.M., McCurdy C.R. (2006) A combined ligand-based and target-based drug design approach for G-protein coupled receptors: application to salvinorin A, a selective kappa opioid receptor agonist. J Comput Aided Mol Des;20:471493.
  • 23
    Vadivelan S., Sinha B.N., Rambabu G., Boppana K., Jagarlapudi S.A.R.P. (2008) Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads. J Mol Graph Model;26:935946.
  • 24
    Ragno R., Simeoni S., Rotili D., Caroli A., Botta G., Brosch G., Massa S., Mai A. (2008) Class II-selective histone deacetylase inhibitors. Part 2: alignment-independent GRIND 3-D QSAR, homology and docking studies. Eur J Med Chem;43:621632.
  • 25
    Sundarapandian T., Shalini J., Sugunadevi S., Lee K.W. (2010) Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery. J Mol Graph Model;29:382395.
  • 26
    Wang D.-F., Wiest O., Helquist P., Lan-Hargest H.Y., Wiech N.L. (2004) QSAR studies of PC-3 cell line inhibition activity of TSA and SAHA-like hydroxamic acids. Bioorg Med Chem Lett;14:707711.
  • 27
    Guo Y.S., Xiao J.F., Guo Z.R., Chu F.M., Cheng Y.H., Wu S. (2005) Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med Chem;13:54245434.
  • 28
    Kaler P., Sasazuki T., Shirasawa S., Augenlicht L., Klampfer L. (2008) HDAC2 deficiency sensitizes colon cancer cells to TNFα-induced apoptosis through inhibition of NF-κB activity. Exp Cell Res;314:15071518.
  • 29
    Yang Y., Qin J., Liu H.X., Yao X.J. (2011) Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors. J Chem Inf Model;51:680692.
  • 30
    Xiao A.J., Zhang Z.Y., An L.Y., Xiang Y.H. (2008) 3D-QSAR and docking studies of 3-arylquinazolinethione derivatives as selective estrogen receptor modulators. J Mol Model;14:149159.
  • 31
    Smil D.V., Manku S., Chantigny Y.A., Leit S., Wahhab A., Yan T.P., Fournel M. et al. (2009) Novel HDAC6 isoform selective chiral small molecule histone deacetylase inhibitors. Bioorg Med Chem Lett;19:688692.
  • 32
    Wahhab A., Smil D., Ajamian A., Allan M., Chantigny Y., Therrien E., Nguyen N. et al. (2009) Sulfamides as novel histone deacetylase inhibitors. Bioorg Med Chem Lett;19:336340.
  • 33
    Moffat D., Patel S., Day F., Belfield A., Donald A., Rowlands M., Wibawa J. et al. (2010) Discovery of 2-(6-{[(6-Fluoroquinolin-2-yl)methyl] amino}- bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J Med Chem;53:86638678.
  • 34
    Manku S., Allan M., Nguyen N., Ajamian A., Rodrigue J., Therrien E., Wang J. et al. (2009) Synthesis and evaluation of lysine derived sulfamides as histone deacetylase inhibitors. Bioorg Med Chem Lett;19:18661870.
  • 35
    Giannini G., Marzi M., Pezzi R., Brunetti T., Battistuzzi G., Di Marzo M., Cabri W., Vesci L., Pisano C. (2009) N-Hydroxy-(4-oxime)-cinnamide: a versatile scaffold for the synthesis of novel histone deacetilase (HDAC) inhibitors. Bioorg Med Chem Lett;19:23462349.
  • 36
    Wei D.G., Yang G.F., Wan J., Zhan C.G. (2005) Binding model construction of antifungal 2-Aryl-4-chromanones. J Agric Food Chem;53:16041611.
  • 37
    Morshed M.N., Muddassar M., Pasha F.A., Cho S.J. (2009) Pharmacophore identification and validation study of CK2 inhibitors using CoMFA/CoMSIA. Chem Biol Drug Des;74:148158.
  • 38
    Gokhale V.M., Kulkarni V.M. (1999) Comparative molecular field analysis of fungal squalene epoxidase inhibitors. J Med Chem;42:53485358.
  • 39
    Zhuo Y., Kong R., Cong X.J., Chen W.Z., Wang C.X. (2008) Three-dimensional QSAR analyses of 1,3,4-trisubstituted pyrrolidine-based CCR5 receptor inhibitors. Eur J Med Chem;48:27242734.
  • 40
    Talele T.T., Kulkarni S.S., Kulkarni V.M. (1999) Development of pharmacophore alignment models as input for comparative molecular field analysis of a diverse set of azole antifungal agents. J Chem Inf Comput Sci;39:958966.
  • 41
    Shi L.M., Fang H., Tong W.D., Wu J., Perkins R., Blair R.M., Branham W.S., Dial S.L., Moland C.L., Sheehan D.M. (2001) QSAR models using a large diverse set of estrogens. J Chem Inf Comput Sci;41:186195.
  • 42
    Kulkarni S.S., Newman A.H., Houlihan W.J. (2002) Three-dimensional quantitative structure-activity relationships of mazindol analogues at the dopamine transporter. J Med Chem;45:41194127.
  • 43
    Yu S.J., Keenan S.M., Tong W., Welsh W.J. (2002) Influence of the structural diversity of data sets on the statistical quality of three dimensional quantitative structure-activity relationship (3D-QSAR) models: predicting the estrogenic activity of xenoestrogens. Chem Res Toxicol;15:12291234.
  • 44
    Juvale D.C., Kulkarni V.V., Deokar H.S., Wagh N.K., Padhye S.B., Kulkarni V.M. (2006) 3D-QSAR of histone deacetylase inhibitors: hydroxamate analogues. Org Biomol Chem;4:28582868.
  • 45
    Samee W., Ungwitayatorn J., Matayatsuk C., Pimthon J. (2004) 3DQSAR studies on phthalimide derivatives as HIV-1 reverse transcriptase inhibitors. ScienceAsia;30:8188.
  • 46
    Zaheer-ul H., Uddin R., Yuan H., Petukhov P.A., Choudhary M.I., Madura J.D. (2008) Receptor-based modeling and 3D-QSAR for a quantitative production of the butyrylcholinesterase inhibitors based on genetic algorithm. J Chem Inf Model;48:10921103.
  • 47
    Kharkar P.S., Desai B., Gaveria H., Varu B., Loriya R., Naliapara Y., Shah A., Kulkarni V.M. (2002) Three-dimensional quantitative structure-activity relationship of 1,4-Dihydropyridines as antitubercular agents. J Med Chem;45:48584867.
  • 48
    Ryu C.K., Lee Y., Park S.G., You H.J., Lee R.Y., Lee S.Y., Choi S. (2008) 3D-QSAR studies of heterocyclic quinones with inhibitory activity on vascular smooth muscle cell proliferation using pharmacophore-based alignment. Bioorg Med Chem;16:97729779.
  • 49
    Richmond N.J., Abrams C.A., Wolohan P.R.N., Abrahamian E., Willett P., Clark R.D. (2006) GALAHAD: 1 Pharmacophore identification by hypermolecular alignment of ligands in 3D. J Comput Aided Mol Des;20:567587.
  • 50
    Zhang Z.Y., An L.Y., Hu W.X., Xiang Y.H. (2007) 3D-QSAR study of hallucinogenic phenylalkylamines by using CoMFA approach. J Comput Aided Mol Des;21:145153.
  • 51
    Weber K.C., Salum L.B., Honório K.M., Andricopulo A.D., Da Silva A.B.F. (2010) Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. Eur J Med Chem;45:15081514.
  • 52
    Caballero J. (2010) 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J Mol Graph Model;29:363371.
  • 53
    Jatavath M.B., Sivan S.K., Lingala Y., Manga V. (2011) Docking and 3D QSAR studies on p38 MAP kinase inhibitors. Eur J Chem;8:15961605.
  • 54
    Zhu Y.Q., Lei M., Lu A.J., Zhao X., Yin X.J., Gao Q.Z. (2009) 3D-QSAR studies of boron-containing dipeptides as proteasome inhibitors with CoMFA and CoMSIA methods. Eur J Med Chem;44:14861499.
  • 55
    Zhao X., Yuan M., Huang B.Y., Ji H., Zhu L. (2010) Ligand-based pharmacophore model of N-Aryl and N-Heteroaryl piperazine α1A-adrenoceptors antagonists using GALAHAD. J Mol Graph Model;29:126136.
  • 56
    Awale M., Mohan C.G. (2008) 3D-QSAR CoMFA analysis of C5 substituted pyrrolotriazines as HER2 (ErbB2) inhibitors. J Mol Graph Model;26:11691178.
  • 57
    Athri P., Wenzler T., Tidwell R., Bakunova S.M., Wilson W.D. (2010) Pharmacophore model for pentamidine analogs active against Plasmodium falciparum. Eur J Med Chem;45:61476151.