• 1
    Butler A.R., Wu Y.L. (1992) Artemisinin (Qinghaosu): a new type of antimalarial drug. Chem Soc Rev;21:8590.
  • 2
    Titulaer H.A.C., Zuidema J., Lugt C.B. (1991) Formulation and pharmacokinetics of artemisinin and its derivatives. Int J Pharm;69:8392.
  • 3
    White N.J. (1994) Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg;88:4143.
  • 4
    Li Q.-G., Peggins J.O., Fleckenstein L.L., Masonic K., Heiffer M.H., Brewer T.G. (1998) The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J Pharm Pharmacol;50:173182.
  • 5
    McCullough K.J., Morgen A.R., Nonhebel D.C., Pauson P.L., White G.J. (1980) Ketone-derived peroxides. Part I. Synthetic methods. J Chem Res (M);1980:601628.
  • 6
    Vennerstrom J.L., Fu H.-N., Ellis W.Y., Ager A.L. Jr, Wood J.K., Andersen S.L., Gerena L., Milhous W.K. (1992) Dispiro-1,2,4,5-tetraoxanes: a new class of antimalarial peroxides. J Med Chem;35:30233027.
  • 7
    Aggarwal B.B., Sundaram C., Malani N., Ichikawa H. (2007) Curcumin: the Indian Solid Gold. Adv Exp Med Biol;595:175.
  • 8
    Reddy R.C., Vatsala P.G., Keshamouni V.G., Padmanaban G., Rangarajan P.N. (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun;326:472474.
  • 9
    Chandru H., Sharada A.C. (2007) Antiangiogenic effects of synthetic analogs of curcumin in vivo. Afr J Biomed Res;10:241248.
  • 10
    Bis(Arylmethylidene)Acetone compound, anti-cancer agent, Carcinogenesis-preventive agent, inhibitor of expression of ki-ras, erbb2, c-myc and cycline d1, beta-Catenin-degrading agent, and p53 expression enhancer. U. S. Patent Application No. 2010/012493, June 17, 2010.
  • 11
    Shibata H., Iwabuchi K., Yamakoshi H., Amano Y., Sato K. (2010) Antiprotozoal agents containing curcumin analogs. Japanese Patent, JP 2010248119;14 p.
  • 12
    Saito I., Nagata R., Yuba K., Matsura T. (1983) Synthesis of α-silyloxyhydroperoxides from the reaction of silyl enol ethers and hydrogen peroxide. Tetrahedron Lett;24:17371740.
  • 13
    Morton A.A. (1951) Mercuration of Ketones and Some Other Compounds with Mercuric Nitrate. J Am Chem Soc;73:33003304.
  • 14
    Richardson E.M. (1940) αı-Di-p-hydroxyphenyl Alkanes. J Am Chem Soc;62:413415.
  • 15
    Trager W., Jensen J.B. (1976) Human malaria parasites in continuous culture. Science;193:673675.
  • 16
    Lambros C., Vanderberg J.P. (1979) Syncronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol;65:418420.
  • 17
    Rieckmann K.H., Vampbell G.H., Sax L.J. (1978) Drug sensitivity of P. falciparum an “in vitro” microtechnique. Lancet;7:2223.
  • 18
    Andrade-Neto V.F., Goulart M.O.F., Filho J.F.S., da Silva M.T., Pinto M.C.F.R., Pinto A.V., Zalis M.G., Carvalho L.H., Krettli A.U. (2004) Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett;14:11451149.
  • 19
    Andrade-Neto V.F., Pohlit A.M., Pinto A.C., Silva E.C., Nogueira K.L., Melo M.R.S., Henrique M.C. et al. (2007) In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Mem Inst Oswaldo Cruz;102:359365.
  • 20
    World Health Organization (WHO) (2001) In vitro Micro-test (Mark III) for the Assessment of the Response of Plasmodium falciparum to Chloroquine, Mefloquine, Quinine, Amodiaquine, Sulfadoxine/Pyrimetamine and Artemisinin. Division of Control of Tropical Disease. Rev. 2 CTD/MAL/97.20.
  • 21
    Žmitek K., Zupan M., Stavber S., Iskra J.I. (2006) Iodine as a catalyst for efficient conversion of ketones to gem-dihydroperoxides by aqueous hydrogen peroxide. Org Lett;8:24912494.
  • 22
    Žmitek K., Stavber S., Zupan M., Bonnet-Delpon D., Charneau S., Grellierc P., Iskra J. (2006) Synthesis and antimalarial activities of novel 3,3,6,6-tetraalkyl-1,2,4,5-tetraoxanes. Bioorg Med Chem Lett;14:77907795.
  • 23
    Opsenica I., Opsenica D., Smith K.S., Milhous W.K., Solaja B.A. (2008) Chemical stability of the peroxide bond enables diversified synthesis of potent tetraoxane antimalarials. J Med Chem;51:22612266.
  • 24
    Li Y., Hao H.-D., Zhang Q., Wu Y. (2009) A broadly applicable mild method for the synthesis of gem-diperoxides from corresponding ketones or 1,3-dioxolanes. Org Lett;11:16151618.
  • 25
    Iskra J., Bonnet-Delpon D., Bégué J.-P. (2003) One-pot synthesis of non-symmetric tetraoxanes with the H2O2/MTO/fluorous alcohol system. Tetrahedron Lett;44:63096312.
  • 26
    Egan T. (2008) Recent advances in understanding the mechanism of hemozoin (malaria pigment) formation. J Inorg Biochem;102:12881299.
  • 27
    Riscoe M., Kelly J., Winter R. (2005) Xanthones as antimalarial agents: discovery, mode of action, and optimization. Curr Med Chem;12:25392549.
  • 28
    Cui L., Su X.-Z. (2009) Discovery, mechanism of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther;8:9991013.
  • 29
    Bhattacharya A., Mishra L., Sharma M., Awasthi S., Bhasin V. (2009) Antimalarial pharmacodynamics of chalcone derivatives in combination with artemisinin against Plasmodium falciparum in vitro. Eur J Med Chem;44:33883393.