SEARCH

SEARCH BY CITATION

References

  • 1
    Black M. (1984) Acetaminophen hepatotoxicity. Annu Rev Med;35:577593.
  • 2
    Mitchell J.R., Jollow D.J., Potter W.Z., Davis D.C., Gillette J.R., Brodie B.B. (1973) Acetaminophen-induced hepatic necrosis. I. role of drug metabolism. J Pharmacol Exp Ther;187:185194.
  • 3
    Flower R.J., Vane J.R. (1972) Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-Acetamidophenol). Nature;240:410411.
  • 4
    Malmberg A.B., Yaksh T.L. (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science;257:12761279.
  • 5
    Mattammal M.B., Zenser T.V., Brown W.W. (1979) Mechanism of inhibition of renal prostaglandin production by acetaminophen. J Pharmacol Exp Ther;210:405409.
  • 6
    Kulmacz R.J., Palmer G., Tsai A.L. (1991) Prostaglandin H synthase: perturbation of the tyrosyl radical as a probe of anticyclooxygenase agents. Mol Pharmacol;40:833837.
  • 7
    Howie D., Adriaenssens P.I., Prescott L.F. (1977) Paracetamol metabolism following overdosage: application of high performance liquid chromatography. J Pharm Pharmacol;29:235237.
  • 8
    Knox J.H., Jurand J. (1977) Determination of paracetamol and its metabolites in urine by high performance liquid chromatography using reversed phase bonded supports. J Chromatogr;142:651670.
  • 9
    Prescott L.F. (1983) Paracetamol overdosage. Pharmacological considerations and clinical management. Drugs;25:290314.
  • 10
    Barnard S., Kelly D.F., Storr R.C., Park B.K. (1993) The effect of fluorine substitution on the hepatotoxicity and metabolism of paracetamol in the mouse. Biochem Pharmacol;46:841849.
  • 11
    Bessems J.G.M., Te Koppele J.M., Van Dijk P.A., Van Stee L.L.P., Commandeur J.N.M., Vermeulen N.P.E. (1996) Rat liver microsomal cytochrome P450-dependent oxidation of 3,5-disubstituted analogues of paracetamol. Xenobiotica;26:647666.
  • 12
    Bessems J.G.M., Van Stee L.L.P., Commandeur J.N.M., Groot E.J., Vermeulen N.P.E. (1997) Cytotoxicity of paracetamol and 3,5-dihalogenated analogues: role of cytochrome P-450 and formation of GSH conjugates and protein adducts. Toxicol In Vitro;11:919.
  • 13
    Holme J.A., Hongslo J.K., Bjorge C., Nelson S.D. (1991) Comparative cytotoxic effects of acetaminophen (N-acetyl-p-aminophenol), a non-hepatotoxic regioisomer acetyl-m-aminophenol and their postulated reactive hydroquinone and quinone metabolites in monolayer cultures of mouse hepatocytes. Biochem Pharmacol;42:11371142.
  • 14
    Van de Straat R., De Vries J., Groot E.J. (1987) Paracetamol, 3-monoalkyl- and 3,5-dialkyl derivatives: comparison of their hepatotoxicity in mice. Toxicol Appl Pharmacol;89:183189.
  • 15
    Van de Straat R., De Vries J., Kulkens T. (1986) Paracetamol, 3-monoalkyl- and 3,5-dialkyl derivatives. Comparison of their microsomal cytochrome P-450 dependent oxidation and toxicity in freshly isolated hepatocytes. Biochem Pharmacol;35:3693699.
  • 16
    Alves C.N., Borges R.S., Da Silva A.B.F. (2006) Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int J Quantum Chem;106:26172623.
  • 17
    Diniz J.E.M., Borges R.S., Alves C.N. (2004) A DFT study for paracetamol and 3,5-disubstituted analogues. J Mol Struct;673:9397.
  • 18
    Queiroz A.N., Gomes B.A.Q., Moraes W.M. Jr, Borges R.S. (2009) A theoretical antioxidant pharmacophore for resveratrol. Eur J Med Chem;44:16441649.
  • 19
    Stewart J.J.P. (1989) Optimization of parameters for semiempirical methods I. Method. J Comb Chem;10:209220.
  • 20
    Parr R.G., Yang W. (1989) Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press.
  • 21
    Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R. (2004) Gaussian 03 Revision C.02. Wallingford, CT: Gaussian Inc.
  • 22
    Becke A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A;38:30983100.
  • 23
    Lee C., Yang W., Parr R.G. (1998) Development of Colle-Salveti correlation-energy formula into a functional of the electron density. Phys Rev B;37:785789.
  • 24
    Hehre W.J., Radom L., Schleyer P.V.R., Pople J.A. (1986) Ab Initio Molecular Orbital Theory. New York: Wiley.
  • 25
    Koster R., Anderson M., De-Beer E.J. (1959) Acetic acid analgesic screening. Fed Proc;18:412420.
  • 26
    Lee H., Kim M., Jun Y.M., Kim B.H., Lee B.M. (2011) N-(2-hydroxyaryl)benzamide synthesis from 2-nitroaryl benzoates via an Indium-mediated reduction-migration reaction. Heteroatom Chem;22:158167.
  • 27
    Zimmermann M. (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain;16:109110.
  • 28
    Ankier S.I. (1974) New hot plate tests to quantify antinociceptive and narcotic antagonist activities. Eur J Pharmacol;27:14.
  • 29
    Eddy N.B., Leimback D. (1953) Synthetic analgesics. II. Dithienylbutenyl- and dithienylbutylamines. J Pharmacol Exp Ther;107:385393.
  • 30
    Pietrovski E.F., Rosa K.A., Facundo V.A., Rios K., Marques M.C.A., Santos A.R.S. (2006) Antinociceptive properties of the ethanolic extract and of the triterpene 3β,6β,16β-trihidroxilup-20(29)-ene obtained from the flowers of Combretum leprosum in mice. Pharmacol Biochem Behav;83:9099.
  • 31
    Dubuisson D., Dennis S.G. (1977) The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain;4:16174.
  • 32
    Hunskaar S., Hole K. (1987) The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain;30:103114.
  • 33
    Albano E., Rundgren M., Harvison P.J. (1985) Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol;28:306311.
  • 34
    Bentes A.L.A., Borges R.S., Monteiro W.R., De Macedo L.G.M., Alves C.N. (2011) Structure of dihydrochalcones and related derivatives and their scavenging and antioxidant activity against oxygen and nitrogen radical species. Molecules;16:17491760.
  • 35
    Borges R.S., Mendes A.P.S., Souza e Silva B.H., Alves C.N., do Nascimento J.L.M. (2011) A theoretical study of salicylate oxidation for ADME prediction. Med Chem Res;20:269273.
  • 36
    Kumar A., Narasimhan B., Kumar D. (2007) Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorg Med Chem;15:41134124.
  • 37
    Du J., Yu Y., Ke Y., Wang C., Zhu L., Qian Z.M. (2007) Ligustilide attenuates pain behavior induced by acetic acid or formalin. J Ethnopharmacol;112:211214.
  • 38
    Ikeda Y., Ueno A., Naraba H., Oh-Ishi S. (2001) Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice. Life Sci;69:29112919.
  • 39
    Le Bars D., Gozariu M., Cadden S.W. (2001) Animal models of nociception. Pharmacol Rev;53:597652.
  • 40
    Woolfe G., Macdonald A.D. (1946) Analgesic action of pethidine derivatives and related compounds. Br J Pharmacol;1:414.
  • 41
    Santos A.R.S., Vedana E.M.A., De Freitas G.A.G. (1998) Antinociceptive effect of meloxicam, in neurogenic and inflammatory nociceptive models in mice. Inflamm Res;47:3027.
  • 42
    Yamamoto T., Nozaki-Taguchi N. (1996) Analysis of the effects of cyclooxygenase (COX)-1 and COX-2 in spinal nociceptive transmission using indomethacin, a non-selective COX inhibitor, and NS-398, a COX-2 selective inhibitor. Brain Res;739:104110.
  • 43
    Hunskaar S., Fasmer O.B., Hole K. (1985) Formalin test in mice, a useful technique for evaluating mild analgesics. J Neurosci Method;14:6976.
  • 44
    Tjølsen A., Hole K. (1997) Animal models of analgesia. In: Dickenson A., Besson J., editors. Animal Models of Analgesia. Berlin: Springer Verlag; p. 120.
  • 45
    Do Amaral J.F., Silva M.I.G., Neto M.R.D.A., Neto P.F.T., Moura B.A., De Melo C.T.V., de Araújo F.L., de Sousa D.P., de Vasconcelos P.F., de Vasconcelos S.M., de Sousa F.C. et al. (2007) Antinociceptive effect of the monoterpene R-(+)-limonene in mice. Biol Pharm Bull;30:12171220.
  • 46
    Gonçalves J.C.R., Oliveira F.D.S., Benedito R.B., De Sousa D.P., De Almeida R.N., De Araújo D.A.M. (2008) Antinociceptive activity of (-)-carvone: evidence of association with decreased peripheral nerve excitability. Biol Pharm Bull;31:10171020.
  • 47
    França D.S., Souza A.L.S., Almeida K.R., Dolabella S.S., Martinelli C., Coelho M.M. (2001) B vitamins induce an antinociceptive effect in the acetic acid and formaldehyde models of nociception in mice. Eur J Pharmacol;421:1571564.
  • 48
    Oliveira F.D.S., De Sousa D.P., De Almeida R.N. (2008) Antinociceptive effect of hydroxydihydrocarvone. Biol Pharm Bull;31:588591.
  • 49
    Borges R.S., Queiroz L.M.D., Sousa P.J.C. (2010) Aplicação de derivados orto-acilamidafenol como analgésico e anti-inflamatório. Brazil Patent No. INPI PI0912033-5.