• 1
    Barrett M.P., Burchmore R.J., Stich A., Lazzari J.O., Frasch A.C., Cazzulo J.J., Krishna S. (2003) The trypanosomiases. Lancet;362:14691480.
  • 2
    World Health Organization (WHO). (2005) A new form of human trypanosomiasis in India. Description of the first human case in the world caused by Trypanosoma evansi. Wkly Epidemiol Rec;80:6263.
  • 3
    Coura J.R., Fernandes O., Arboleda M., Barrett T.V., Carrara N., Degrave W., Campbell D.A. (1996) Human infection by Trypanosoma rangeli in the Brazilian Amazon. Trans R Soc Trop Med Hyg;90:278279.
  • 4
    D’Alessandro-Bacigalupo A., Saravia N.G. (1992) Trypanosoma rangeli. In: Kreier J.P., Baker J.R., editor. Parasitic Protozoa. San Diego: Academic Press; p. 154.
  • 5
    Silva M.S., Prazeres D.M., Lanca A., Atouguia J., Monteiro G.A. (2009) Trans-sialidase from Trypanosoma brucei as a potential target for DNA vaccine development against African trypanosomiasis. Parasitol Res;105:12231229.
  • 6
    Joshi P.P., Shegokar V.R., Powar R.M., Herder S., Katti R., Salkar H.R., Dani V.S., Bhargava A., Jannin J., Truc P. (2005) Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. Am J Trop Med Hyg;73:491495.
  • 7
    Tiralongo E., Martensen I., Grotzinger J., Tiralongo J., Schauer R. (2003) Trans-sialidase-like sequences from Trypanosoma congolense conserve most of the critical active site residues found in other trans-sialidases. Biol Chem;384:12031213.
  • 8
    Taylor G. (1996) Sialidases: structures, biological significance and therapeutic potential. Curr Opin Struct Biol;6:830837.
  • 9
    Schenkman S., Jiang M.S., Hart G.W., Nussenzweig V. (1991) A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell;65:11171125.
  • 10
    Tomlinson S., Pontes de Carvalho L.C., Vandekerckhove F., Nussenzweig V. (1994) Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J Immunol;153:31413147.
  • 11
    Yakubu B., Nok A.J., Sanni I., Inuwa H.M. (2011) Trans-sialidase-like gene from the bloodstream form of Trypanosoma evansi conserves most of the active site residues and motifs found in Trypanosomal sialidases and trans-sialidases. African J Biotech;10:23882398.
  • 12
    Marti-Renom M.A., Stuart A.C., Fiser A., Sanchez R., Melo F., Sali A. (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct;29:291325.
  • 13
    Silva J.R.A., Lameira J., Santana P.P.B., Silva A., Schneider M.P.C., Alves C.N. (2010) Homology modeling and molecular dynamics simulation of an alpha methyl coenzyme M reductase from methanogenic archea. Int J Quantum Chem;110:20672075.
  • 14
    Moraes G., Azevedo V., Costa M., Miyoshi A., Silva A., da Silva V., de Oliveira D., Teiceira M.F., Lameira J., Alves C.N. (2011) Homology modeling, molecular dynamics and QM/MM study of the regulatory protein PhoP from Corynebacterium pseudotuberculosis. J Mol Modelz. in press. doi: 10.1007/s00894-011-1145-x.
  • 15
    Höltje H.D., Sippl W., Rognan D., Folkers G. (2008). Molecular modeling : basic principles and applications. Germany: Wiley-VCH, Weinheim.
  • 16
    Alves C.N., Marti S., Castillo R., Andres J., Moliner V., Tunon I., Silla E. (2007) A quantum mechanics/molecular mechanics study of the protein-ligand interaction for inhibitors of HIV-1 integrase. Chemistry;13:77157724.
  • 17
    Lameira J., Alves C.N., Moliner V., Marti S., Kanaan N., Tunon I. (2008) A quantum mechanics/molecular mechanics study of the protein-ligand interaction of two potent inhibitors of human O-GlcNAcase: PUGNAc and NAG-thiazoline. J Phys Chem B;112:1426014266.
  • 18
    Lima A.H., Lameira J., Alves C.N. (2011) Protein-ligand interaction of T. cruzi trans-sialidase inhibitors: a docking and QM/MM MD study. Struct Chem in press. doi: 10.1007/s11224-011-9854-4.
  • 19
    Warshel A., Levitt M. (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol;103:227249.
  • 20
    Reuter G., Schauer R., Prioli R., Pereira M.E.A. (1987) Isolation and properties of a sialidase from Trypanosoma rangeli. Glycoconjugate J;4:339348.
  • 21
    Amaya M.F., Buschiazzo A., Nguyen T., Alzari P.M. (2003) The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J Mol Biol;325:773784.
  • 22
    Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. (1990) Basic local alignment search tool. J Mol Biol;215:403410.
  • 23
    Berman H.M., Bhat T.N., Bourne P.E., Feng Z., Gilliland G., Weissig H., Westbrook J. (2000) The Protein Data Bank and the challenge of structural genomics. Nat Struct Biol;7:957959.
  • 24
    Sander C., Schneider R. (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins;9:5668.
  • 25
    Sali A., Potterton L., Yuan F., van Vlijmen H., Karplus M. (1995) Evaluation of comparative protein modeling by MODELLER. Proteins;23:318326.
  • 26
    Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. (1993) PROCHECK - a program to check the stereochemical quality of protein structures. J App Cryst;26:283291.
  • 27
    Wiederstein M., Sippl M.J. (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res;35:407410.
  • 28
    Byrd R.H., Lu P., Nocedal J. (1995) A limited memory algorithm for bound constrained optimization, SIAM. J Sci Stat Comp;16:11901208.
  • 29
    Field M.J. (1999) A practical Introduction to the Simulation of Molecular Systems. Cambridge, UK: Cambridge University Press.
  • 30
    Field M.J., Albe M., Bret C., Proust-de Martin F., Thomas A. (2000) The dynamo library for molecular simulations using hybrid quantum mechanical and molecular mechanical potentials. J Comput Chem;21:10881100.
  • 31
    Jorgensen W.L., Maxwell D.S., Tirado-Rives J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc;118:1122511236.
  • 32
    Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem;30:27852791.
  • 33
    Trott O., Olson A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem;31:455461.
  • 34
    Dewar M.J.S., Zoebisch E.G., Healy E.F., Stewart J.J.P. (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc;107:39023909.
  • 35
    Burmeister W.P., Henrissat B., Bosso C., Cusack S., Ruigrok R.W. (1993) Influenza B virus neuraminidase can synthesize its own inhibitor. Structure;1:1926.
  • 36
    Taylor N.R., von Itzstein M. (1994) Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J Med Chem;37:616624.
  • 37
    Paris G., Ratier L., Amaya M.F., Nguyen T., Alzari P.M., Frasch A.C. (2005) A sialidase mutant displaying trans-sialidase activity. J Mol Biol;345:923934.
  • 38
    Nok A.J., Nzelibe H.C., Yako S.K. (2003) Trypanosoma evansi sialidase: surface localization, properties and hydrolysis of ghost red blood cells and brain cells-implications in trypanosomiasis. Z Naturforsch C;58:594601.