SEARCH

SEARCH BY CITATION

References

  • 1
    World Health Organization (WHO) (2010) Global Report on Antimalarial Efficacy and Drug Resistance: 2000–2010. Geneva, Switzerland: WHO; http://whqlibdoc.who.int/publications/2010/97892415-00470_eng.pdf (accessed on 24 February 2011).
  • 2
    Wilson R.J.M. (2005) Parasite plastids: approaching the endgame. Biol Rev;80:129153.
  • 3
    Ralph S.A., van Dooren G.G., Waller R.F., Crawford M.J., Fraunholz M.J., Foth B.J., Tonkin C.J., Roos D.S., McFadden G.I. (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol;2:203216.
  • 4
    Seeber F. (2003) Biosynthetic pathways of plastid-derived organelles as potential drug targets against parasitic apicomplexa. Curr Drug Targets Immune Endocr Metabol Disord;3:99109.
  • 5
    Ben Mamoun C., Prigge S.T., Vial H. (2010) Targeting the lipid metabolic pathways for the treatment of malaria. Drug Dev Res;71:4455.
  • 6
    Foth B.J., McFadden G.I. (2003) The apicoplast: a plastid in Plasmodium falciparum and other apicomplexan parasites. Int Rev Cytol;224:57110.
  • 7
    Chaubey S., Kumar A., Singh D., Habib S. (2005) The apicoplast of Plasmodium falciparum is translationally active. Mol Microbiol;56:8189.
  • 8
    Prigge S.T., He X., Gerena L., Waters N.C., Reynolds K.A. (2003) The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. Biochemistry;42:11601169.
  • 9
    Pillai S., Rajagopal C., Kapoor M., Kumar G., Gupta A., Surolia N. (2003) Functional characterization of beta-ketoacyl–ACP reductase (FabG) from Plasmodium falciparum. Biochem Biophys Res Commun;303:387392.
  • 10
    Lack G., Homberger-Zizzari E., Folkers G., Scapozza L., Perozzo R. (2006) Recombinant expression and biochemical characterization of the unique elongating beta-ketoacyl–acyl carrier protein synthase involved in fatty acid biosynthesis of Plasmodium falciparum using natural and artificial substrates. J Biol Chem;281:95389546.
  • 11
    Kapoor M., Dar M.J., Surolia A., Surolia N. (2001) Kinetic determinants of the interaction of enoyl-ACP reductase from Plasmodium falciparum with its substrates and inhibitors. Biochem Biophys Res Commun;289:832837.
  • 12
    Sharma S.K., Padhan K., Rath Y., Rao S.K. (2001) Observations on the breeding habitat of Aedes species in the steel township, Rourkela. J Commun Dis;33:2835.
  • 13
    Lee P.J., Bhonsle J.B., Gaona H.W., Huddler D.P., Heady T.N., Kreishman-Deitrick M., Bhattacharjee A., McCalmont W.F., Gerena L., Lopez-Sanchez M., Roncal N.E., Hudson T.H., Johnson J.D., Prigge S.T., Waters N.C. (2009) Targeting the fatty acid biosynthesis enzyme, beta-ketoacyl-acyl carrier protein synthase III (PfKASIII), in the identification of novel antimalarial agents. J Med Chem;52:952963.
  • 14
    Mazumdar J., Striepen B. (2007) Make it or take it: fatty acid metabolism of apicomplexan parasites. Eukaryot Cell;6:17271735.
  • 15
    Sharma S., Sharma S.K., Modak R., Karmodiya K., Surolia N., Surolia A. (2007) Mass spectrometry-based systems approach for identification of inhibitors of Plasmodium falciparum fatty acid synthase. Antimicrob Agents Chemother;51:25522558.
  • 16
    Vial H.J., Ancelin M.L. (1998) Malaria: Parasite Biology, Pathogenesis, and Protection. Washington, DC: ASM Press; 159175.
  • 17
    Foth B.J., Stimmler L.M., Handman E., Crabb B.S., Hodder A.N., McFadden G.I. (2005) The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol Microbiol;55:3953.
  • 18
    Allary M., Lu J.Z., Zhu L., Prigge S.T. (2007) Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum. Mol Microbiol;63:13311344.
  • 19
    Goodman C.D., McFadden G.I. (2007) Fatty acid biosynthesis as a drug target in apicomplexan parasites. Curr Drug Targets;8:1530.
  • 20
    Freundlich J.S., Wang F., Tsai H.C., Kuo M., Shieh H.M., Anderson J.W., Nkrumah L.J. et al. (2007) X-ray structural analysis of Plasmodium falciparum enoyl–acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy. J Biol Chem;282:2543625444.
  • 21
    Swarnamukhi P.L., Sharma S.K., Bajaj P., Surolia N., Surolia A., Suguna K. (2006) Crystal structure of dimeric FabZ of Plasmodium falciparum reveals conformational switching to active hexamers by peptide flips. FEBS Lett;580:26532660.
  • 22
    Prudencio M., Rodriguez A., Mota M.M. (2006) The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol;4:849856.
  • 23
    Surolia N., Surolia A. (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat Med;7:167173.
  • 24
    Sato S., Wilson R.J. (2005) The plastid of Plasmodium spp. a target for inhibitors. Curr Top Microbiol Immunol;295:251273.
  • 25
    Wiesner J., Seeber F. (2005) The plastid-derived organelle of protozoan human parasites as a target of established and emerging drugs. Expert Opin Ther Targets;9:2344.
  • 26
    Tarun A.S., Peng X., Dumpit R.F., Ogata Y., Silva-Rivera H., Camargo N., Daly T.M., Bergman L.W., Kappe S.H. (2008) A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA;105:305310.
  • 27
    Vaughan A.M., O’Neill M.T., Tarun A.S., Camargo N., Phuong T.M., Aly A.S., Cowman A.F., Kappe S.H. (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol;11:506520.
  • 28
    Escalada M.G., Russell A.D., Maillard J.Y., Ochs D. (2005) Triclosan–bacteria interactions: single or multiple target sites? Lett Appl Microbiol;41:476481.
  • 29
    Carlton J.M., Angiuoli S.V., Suh B.B., Kooij T.W., Pertea M., Silva J.C., Ermolaeva M.D. et al. (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii. Nature;419:512519.
  • 30
    Wickramasinghe S.R., Inglis K.A., Urch J.E., Müller S., van Aalten D.M., Fairlamb A.H. (2006) Kinetic, inhibition and structural studies on 3-oxoacyl–ACP reductase from Plasmodium falciparum, a key enzyme in fatty acid biosynthesis. Biochem J;393:447457.
  • 31
    Brozek K.A., Carlson R.W., Raetz C.R.H. (1996) A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. J Biol Chem;27:132126132136.
  • 32
    Ritsema T., Gehring A.M., Stuitje A.R., van der Drift K.M., Dandal I., Lambalot R.H., Walsh C.T., Thomas-Oates J.E., Lugtenberg B.J., Spaink H.P. (1998) Functional analysis of an interspecies chimera of acyl carrier proteins indicates a specialized domain for protein recognition. Mol Gen Genet;257:641648.
  • 33
    Waller R.F., Keeling P.J., Donald R.G., Striepen B., Handman E., Lang-Unnasch N., Cowman A.F., Besra G.S., Roos D.S., McFadden G.I. (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA;95:1235212357.
  • 34
    Lambalot R.H., Gehring A.M., Flugel R.S., Zuber P., LaCelle M., Marahiel M.A., Reid R., Khosla C., Walsh C.T. (1996) A new enzyme superfamily-the phosphopantetheinyl transferases. Chem Biol;3:923936.
  • 35
    Sharma A.K., Sharma S.K., Surolia A., Surolia N., Sharma S.P. (2006) Solution structures of conformationally equilibrium forms of holo-acyl carrier protein (PfACP) from Plasmodium falciparum provides insight into the mechanism of activation of ACPs. Biochemistry;22:69046916.
  • 36
    Hitchman T.S., Crosby J., Byrom K.J., Cox R.J., Simpson T.J. (1998) Catalytic self-acylation of type II polyketide synthase acyl carrier proteins. Chem Biol;1:3547.
  • 37
    Mishra A., Sharma S.K., Surolia N., Surolia A. (2007) Self-acylation properties of type II fatty acid biosynthesis acyl carrier protein. Chem Biol;14:775783.
  • 38
    Waters N.C., Kopydlowski K.M., Guszczynski T., Wei L., Sellers P., Ferlan J.T., Lee P.J., Li Z., Woodard C.L., Shallom S., Gardner M.J., Prigge S.T. (2002) Functional characterization of the acyl carrier protein (PfACP) and beta-ketoacyl–ACP synthase III (PfKASIII) from Plasmodium falciparum. Mol Biochem Parasitol;123:8594.
  • 39
    Yu M., Kumar T.R., Nkrumah L.J., Coppi A., Retzlaff S., Li C.D., Kelly B.J. et al. (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe;4:567578.
  • 40
    Gallagher J.R., Prigge S.T. (2010) Plasmodium falciparum acyl carrier protein crystal structures in disulfide-linked and reduced states and their prevalence during blood stage growth. Proteins;78:575588.
  • 41
    Upadhyay S.K., Misra A., Srivastava R., Surolia N., Surolia A., Sundd M. (2009) Structural insights into the acyl intermediates of the Plasmodium falciparum fatty acid synthesis pathway: the mechanism of expansion of the acyl carrier protein core. J Biol Chem;284:2239022400.
  • 42
    Pei Y., Tarun A.S., Vaughan A.M., Herman R.W., Soliman J.M., Erickson-Wayman A., Kappe S.H. (2010) Plasmodium pyruvate dehydrogenase activity is only essential for the parasite’s progression from liver infection to blood infection. Mol Microbiol;75:957971.
  • 43
    Penna-Coutinho J., Cortopassi W.A., Oliveira A.A., França T.C., Krettli A.U. (2011) Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One;6:e21237.
  • 44
    Gunther S., Wallace L., Patzewitz E.M., McMillan P.J., Storm J., Wrenger C., Bissett R., Smith T.K., Müller S. (2007) Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum. PLoS Pathog;3:19381949.
  • 45
    Sharma S., Sharma S.K., Surolia N., Surolia A. (2009) β-Ketoacyl-ACP Synthase I/II from Plasmodium falciparum (PfFabB/F)—is it B or F? IUBMB Life;61:658662.
  • 46
    Morgan-Kiss R.M., Cronan J.E. (2008) The Lactococcus lactis FabF fatty acid synthetic enzyme can functionally replace both the FabB and FabF proteins of Escherichia coli and the FabH protein of Lactococcus lactis. Arch Microbiol;190:427437.
  • 47
    Karmodiya K., Sajad S., Sinha S., Maity K., Suguna K., Surolia N. (2007) Conformational stability and thermodynamic characterization of homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase. IUBMB Life;59:441449.
  • 48
    Surolia N., Surolia A. (2011) Reply to: “Triclosan is minimally effective in rodent malaria models”. Nat Med;17:3435.
  • 49
    Huthmacher C., Hoppe A., Bulik S., Holzhütter H.G. (2010) Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst Biol;4:120.
  • 50
    Price A.C., Choi K.H., Heath R.J., Li Z., White S.W., Rock C.O. (2001) Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J Biol Chem;276:65516559.
  • 51
    Maity K., Venkata B.S., Kapoor N., Surolia N., Surolia A., Suguna K. (2011) Structural basis for the functional and inhibitory mechanisms of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) of Plasmodium falciparum. J Struct Biol;176:238249.
  • 52
    Tasdemir D., Sanabria D., Lauinger I.L., Tarun A., Herman R., Perozzo R., Zloh M., Kappe S.H., Brun R., Carballeira N.M. (2010) 2-Hexadecynoic acid inhibits plasmodial FAS-II enzymes and arrest erythrocytic and liver stage Plasmodium infections. Bioorg Med Chem;18:74757485.
  • 53
    Bhattarai A., Ali A.S., Kachur S.P., Mårtensson A., Abbas A.K., Khatib R., Al-Mafazy A.W., Ramsan M., Rotllant G., Gerstenmaier J.F., Molteni F., Abdulla S., Montgomery S.M., Kaneko A., Bjorkman A. (2007) Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med;4:e309.
  • 54
    Noedl H., Se Y., Schaecher K., Smith B.L., Socheat D., Fukuda M.M., Artemisinin Resistance in Cambodia 1 (ARC1) Study Consortium. (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med;359:26192620.
  • 55
    Kapoor N., Banerjee T., Babu P., Maity K., Surolia N., Surolia A. (2009) Design, development, synthesis, and docking analysis of 2′-substituted triclosan analogs as inhibitors for Plasmodium falciparum enoyl-ACP reductase. IUBMB Life;61:10831091.
  • 56
    Frecer V., Megnassan E., Miertus S. (2009) Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. Eur J Med Chem;44:30093019.
  • 57
    Shah P., Siddiqi M.I. (2010) 3D-QSAR studies on triclosan derivatives as Plasmodium falciparum enoyl acyl carrier reductase inhibitors. SAR QSAR Environ Res;21:527545.
  • 58
    Freundlich J.S., Anderson J.W., Sarantakis D., Shieh H.M., Yu M., Valderramos J.C., Lucumi E., Kuo M., Jacobs W.R. Jr, Fidock D.A., Schiehser G.A., Jacobus D.P., Sacchettini J.C. (2005) Synthesis, biological activity, and X-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 1: 4′-substituted triclosan derivatives. Bioorg Med Chem Lett;15:52475252.
  • 59
    Kapoor M., Reddy C.C., Krishnasastry M.V., Surolia N., Surolia A. (2004) Slow-tight-binding inhibition of enoyl-acyl carrier protein reductase from Plasmodium falciparum by triclosan. Biochem J;381:719724.
  • 60
    Sharma S.K., Parasuraman P., Kumar G., Surolia N., Surolia A. (2007) Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR). J Med Chem;50:765775.
  • 61
    Kumar G., Banerjee T., Kapoor N., Surolia N., Surolia A. (2010) SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. IUBMB Life;62:204213.
  • 62
    Tasdemir D., Topaloglu B., Perozzo R., Brun R., O’Neill R., Carballeira N.M., Zhang X., Tonge P.J., Linden A., Rüedi P. (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg Med Chem;15:68346845.
  • 63
    Alhamadsheh M.M., Waters N.C., Sachdeva S., Lee P., Reynolds K.A. (2008) Synthesis and biological evaluation of novel sulfonyl-naphthalene-1, 4-diols as FabH inhibitors. Bioorg Med Chem Lett;18:64026405.
  • 64
    Chhibber M., Kumar G., Parasuraman P., Ramya T.N., Surolia N., Surolia A. (2006) Novel diphenyl ethers: design, docking studies, synthesis and inhibition of enoyl ACP reductase of Plasmodium falciparum and Escherichia coli. Bioorg Med Chem;14:80868098.
  • 65
    Nicola G., Smith C.A., Lucumi E., Kuo M.R., Karagyozov L., Fidock D.A., Sacchettini J.C., Abagyan R. (2007) Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. Biochem Biophys Res Commun;358:686691.
  • 66
    Karioti A., Skaltsa H., Zhang X., Tonge P.J., Perozzo R., Kaiser M., Franzblau S.G., Tasdemir D. (2008) Inhibiting enoyl-ACP reductase (FabI) across pathogenic microorganisms by linear sesquiterpene lactones from Anthemis auriculata. Phytomedicine;15:11251129.
  • 67
    Morde V.A., Shaikh M.S., Pissurlenkar R.R.S., Coutinho E.C. (2009) Molecular modeling studies, synthesis, and biological evaluation of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR) inhibitors. Mol Divers;13:501517.
  • 68
    Simmons D.L. (2005) Anti-adhesion therapies. Curr Opin Pharmacol;5:398404.
  • 69
    Rowe J.A., Claessens A., Corrigan R.A., Arman M. (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med;11:e16.
  • 70
    Guiguemde W.A., Shelat A.A., Bouck D., Duffy S., Crowther G.J., Davis P.H., Smithson D.C. et al. (2010) Chemical genetics of Plasmodium falciparum. Nature;465:311315.
  • 71
    Banerjee T., Sharma S.K., Kapoor N., Dwivedi V., Surolia N., Surolia A. (2011) Benzothiophene carboxamide derivatives as inhibitors of Plasmodium falciparum enoyl-ACP reductase. IUBMB Life;63:11011110.
  • 72
    Tipparaju S.K., Muench S.P., Mui E.J., Ruzheinikov S.N., Lu J.Z., Hutson S.L., Kirisits M.J., Prigge S.T., Roberts C.W., Henriquez F.L., Kozikowski A.P., Rice D.W., McLeod R.L. (2010) Identification and Development of Novel Inhibitors of Toxoplasma gondii Enoyl Reductae. Med Chem;53:62876300.
  • 73
    Waller R.F., Ralph S.A., Reed M.B., Su V., Douglas J.D., Minnikin D.E., Cowman A.F., Besra G.S., McFadden G.I. (2003) A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum. Antimicrob Agents Chemother;47:297301.
  • 74
    Roy K.K., Bhunia S.S., Saxena A.K. (2011) CoMFA, CoMSIA, and docking studies on thiolactone-class of potent anti-malarials: identification of essential structural features modulating anti-malarial activity. Chem Biol Drug Des;78:483493.
  • 75
    Gupta A.K., Saxena S., Saxena M. (2010) Integrated ligand and structure based studies of flavonoids as fatty acid biosynthesis inhibitors of Plasmodium falciparum. Bioorg Med Chem Lett;20:47794781.
  • 76
    Williams T.N., Wambua S., Uyoga S., Macharia A., Mwacharo J.K. (2005) Both heterozygous and homozygous α-thalassemia protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood;106:368371.
  • 77
    Aidoo M., Terlouw D.J., Kolczak M.S., McElroy P.D., ter Kuile F.O., Kariuki S., Nahlen B.L., Lal A.A., Udhayakumar V. (2002) Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet;359:13111312.
  • 78
    Tan X., Traore B., Kayentao K., Ongoiba A., Doumbo S., Waisberg M., Doumbo O.K., Felgner P.L., Fairhurst R.M., Crompton P.D. (2011) Hemoglobin S and C heterozygosity enhances neither the magnitude nor breadth of antibody responses to a diverse array of Plasmodium falciparum antigens. J Infect Dis;204:17501761.
  • 79
    Balgir R.S. (2005) The spectrum of haemoglobin variants in two scheduled tribes of Sundargarh district in north-western Orissa, India. Ann Hum Biol;32:560573.
  • 80
    Driss A., Hibbert J.M., Wilson N.O., Iqbal S.A., Adamkiewicz T.V., Stiles J.K. (2011) Genetic polymorphisms linked to susceptibility to malaria. Malar J;10:271.
  • 81
    Escalante A.A., Lal A.A., Ayala F.J. (1998) Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics;149:189202.
  • 82
    Sinha S., Qidwai T., Kanchan K., Anand P., Jha G.N., Pati S.S., Mohanty S., Mishra S.K., Tyagi P.K., Sharma S.K., IGVC, Venkatesh V., Habib S. (2008) Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India. Malar J;7:250.
  • 83
    Sinha S., Jha G.N., Anand P., Qidwai T., Pati S.S., Mohanty S., Mishra S.K., Tyagi P.K., Sharma S.K., IGVC, Venkatesh V., Habib S. (2009) CR1 levels and gene polymorphisms exhibit differential association with falciparum malaria in regions of varying disease endemicity. Hum Immunol;70:244250.
  • 84
    Sinha S., Qidwai T., Kanchan K., Anand P., Jha G.N., Pati S.S., Mohanty S., Mishra S.K., Tyagi P.K., Sharma S.K., IGVC, Venkatesh V., Habib S. (2010) Distinct cytokine profiles define immune response to falcipatum malaria in region of high and low transmission. Eur Cytokine Netw;21:232240.
  • 85
    Jha P., Sinha S., Kanchan K., Qidwai T., Narang A., Singh P.K., Pati S.S., Mohanty S., Mishra S.K., Sharma S.K., Awasthi S., Venkatesh V., Jain S., Basu A., Xu S. (2012) Deletion of the APOBEC3B gene strongly impacts susceptibility to falciparum malaria. Infect Genet Evol;12:142148.