• 1
    Kühnel M.P., Cosovic B., Medic G., Russell R.B., Apic G. (2008) Pathway Analysis for Drug Discovery: Computational Infrastructure and Applications. New York: John Wiley and Sons Inc.
  • 2
    Sauer U.G. (2003) The new EU Chemicals Policy--comments of Eurogroup for Animal Welfare and the Deutscher Tierschutzbund on the EU-Commission’s REACH system Consultation Documents. ALTEX;20:225227.
  • 3
    Mombelli E., Devillers J. (2010) Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals. SAR QSAR Environ Res;21:731752.
  • 4
    Valerio L.G. Jr, Arvidson K.B., Chanderbhan R.F., Contrera J.F. (2007) Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol;222:116.
  • 5
    Devillers J., Mombelli E. (2010) Evaluation of the OECD QSAR Application Toolbox and Toxtree for estimating the mutagenicity of chemicals. Part 1. Aromatic amines. SAR QSAR Environ Res;21:753769.
  • 6
    Zhang Q.Y., Aires-de-Sousa J. (2007) Random forest prediction of mutagenicity from empirical physicochemical descriptors. J Chem Inf Model;47:18.
  • 7
    Shoji R., Kawakami M. (2006) Prediction of genotoxicity of various environmental pollutants by artificial neural network simulation. Mol Divers;10:101108.
  • 8
    Gombar V.K., Enslein K., Blake B.W. (1995) Assessment of developmental toxicity potential of chemicals by quantitative structure-toxicity relationship models. Chemosphere;31:24992510.
  • 9
    Votano J.R., Parham M., Hall L.H., Kier L.B., Oloff S., Tropsha A., Xie Q., Tong W. (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis;19:365377.
  • 10
    Leong M.K., Lin S.W., Chen H.B., Tsai F.Y. (2010) Predicting mutagenicity of aromatic amines by various machine learning approaches. Toxicol Sci;116:498513.
  • 11
    Valerio L.G., Yang C., Arvidson K.B., Kruhlak N.L. (2010) A structural feature-based computational approach for toxicology predictions. Expert Opin Drug Metab Toxicol;6:505518.
  • 12
    Snyder R.D., Pearl G.S., Mandakas G., Choy W.N., Goodsaid F., Rosenblum I.Y. (2004) Assessment of the sensitivity of the computational programs DEREK, TOPKAT, and MCASE in the prediction of the genotoxicity of pharmaceutical molecules. Environ Mol Mutagen;43:143158.
  • 13
    Valerio L.G. Jr (2009) In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol;241:356370.
  • 14
    Liu H., Papa E., Gramatica P. (2006) QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol;19:15401548.
  • 15
    Pavan M., Netzeva T.I., Worth A.P. (2006) Validation of a QSAR model for acute toxicity. SAR QSAR Environ Res;17:147171.
  • 16
    Saliner A.G., Netzeva T.I., Worth A.P. (2006) Prediction of estrogenicity: validation of a classification model. SAR QSAR Environ Res;17:195223.
  • 17
    Simon-Hettich B., Rothfuss A., Steger-Hartmann T. (2006) Use of computer-assisted prediction of toxic effects of chemical substances. Toxicology;224:156162.
  • 18
    Cronin M.T. (2002) The current status and future applicability of quantitative structure-activity relationships (QSARs) in predicting toxicity. Altern Lab Anim;30 (Suppl. 2):8184.
  • 19
    Brennan R.J. (2008) Fine-tuning compound safety assessments: facilitating comprehensive systems toxicology data analysis. Genet Eng News;28:3435.
  • 20
    Rusinko A. III, Farmen M.W., Lambert C.G., Brown P.L., Young S.S. (1999) Analysis of a large structure/biological activity data set using recursive partitioning. J Chem Inf Comput Sci;39:10171026.
  • 21
    Adamson G.W., Lynch M.F., Town W.G.J. (1971) Analysis of structural characteristics of chemical compounds in a large computer-based file. 2. Atom-centred fragments. J Chem Soc C;22:37023706.
  • 22
    Netzeva T.I., Worth A., Aldenberg T., Benigni R., Cronin M.T., Gramatica P., Jaworska J.S. et al. (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim;33:155173.
  • 23
    Sheridan R.P., Feuston B.P., Maiorov V.N., Kearsley S.K. (2004) Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci;44:19121928.
  • 24
    Dimitrov S., Dimitrova G., Pavlov T., Dimitrova N., Patlewicz G., Niemela J., Mekenyan O. (2005) A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model;45:839849.
  • 25
    Tong W., Xie Q., Hong H., Shi L., Fang H., Perkins R. (2004) Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity. Environ Health Perspect;112:12491254.
  • 26
    Matthews E.J., Kruhlak N.L., Weaver J.L., Benz R.D., Contrera J.F. (2004) Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling. Curr Drug Discov Technol;1:243254.
  • 27
    Fourches D., Barnes J.C., Day N.C., Bradley P., Reed J.Z., Tropsha A. (2010) Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol;23:171183.
  • 28
    Rodgers A.D., Zhu H., Fourches D., Rusyn I., Tropsha A. (2010) Modeling liver-related adverse effects of drugs using knearest neighbor quantitative structure-activity relationship method. Chem Res Toxicol;23:724732.
  • 29
    Jaeschke H., Gores G.J., Cederbaum A.I., Hinson J.A., Pessayre D., Lemasters J.J. (2002) Mechanisms of hepatotoxicity. Toxicol Sci;65:166176.
  • 30
    Hawkins D.M.Y., Young S.S., Rusinko A. (1997) Analysis of a large structure-activity data set using recursive partitioning. Quant Struct-Act Relat;16:296302.
  • 31
    Tong W., Hong H., Fang H., Xie Q., Perkins R. (2003) Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci;43:525531.
  • 32
    Young S.S., Gombar G.V., Emptage M.R., Cariello N.F., Lambert C. (2002) Mixture deconvolution and analysis of Ames mutagenicity data. Chem Int Lab Syst;60:511.
  • 33
    Low Y., Uehara T., Minowa Y., Yamada H., Ohno Y., Urushidani T., Sedykh A. et al. (2011) Predicting drug-induced hepatotoxicity using QSAR and toxicogenomics approaches. Chem Res Toxicol;24:12511262.
  • 34
    Cheng A., Dixon S.L. (2003) In silico models for the prediction of dose-dependent human hepatotoxicity. J Comput Aided Mol Des;17:811823.
  • 35
    Clark R.D., Wolohan P.R., Hodgkin E.E., Kelly J.H., Sussman N.L. (2004) Modelling in vitro hepatotoxicity using molecular interaction fields and SIMCA. J Mol Graph Model;22:487497.
  • 36
    Cruz-Monteagudo M., Cordeiro M.N., Borges F. (2008) Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity. J Comput Chem;29:533549.
  • 37
    Matthews E.J., Ursem C.J., Kruhlak N.L., Benz R.D., Sabate D.A., Yang C., Klopman G. et al. (2009) Identification of structure-activity relationships for adverse effects of pharmaceuticals in humans: part B. Use of (Q)SAR systems for early detection of drug-induced hepatobiliary and urinary tract toxicities. Regul Toxicol Pharmacol;54:2342.
  • 38
    Jolivette L.J., Anders M.W. (2002) Structure-activity relationship for the biotransformation of haloalkenes by rat liver microsomal glutathione transferase 1. Chem Res Toxicol;15:10361041.
  • 39
    Ekins S., Crumb W.J., Sarazan R.D., Wikel J.H., Wrighton S.A. (2002) Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J Pharmacol Exp Ther;301:427434.
  • 40
    Cavalli A., Poluzzi E., De Ponti F., Recanatini M. (2002) Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers. J Med Chem;45:38443853.
  • 41
    Pearlstein R.A., Vaz R.J., Kang J., Chen X.L., Preobrazhenskaya M., Shchekotikhin A.E., Korolev A.M. et al. (2003) Characterization of HERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg Med Chem Lett;13:18291835.