• hepatocyte delivery;
  • HepG2;
  • lipoplex;
  • RNA interference;
  • steryl glycoside

Liposomes form a major class of non-viral vectors for short interfering RNA delivery, however tissue and cell-specific targeting are additional requirements in the design of short interfering RNA delivery systems with a therapeutic potential. Selective delivery of liposomes to hepatocytes may be achieved by directing complexes to the asialoglycoprotein receptor, which is expressed on hepatocytes, and which displays high affinity for the β-d-galactopyranosyl moiety. We aimed to show that the d-galactopyranosyl ring in direct β-glycosidic link to cholesterol, when formulated into liposomes with 3β[N-(N′,N′-dimethylaminopropane) carbamoyl] cholesterol (Chol-T) or its quaternary trimethylammonium analogue (Chol-Q), may promote targeted delivery of cytotoxic short interfering RNA to the human hepatoma cell line HepG2 via the asialoglycoprotein receptor. Liposome-short interfering RNA interactions were characterized by electron microscopy, dye displacement, gel retardation and nuclease assays. Stable short interfering RNA-protective lipoplexes were formed at N/P ratios in the range 5:1–7:1. Targeted lipoplex 4 achieved high transfection efficiencies at 50 nm short interfering RNA (70%) and <10% in a competition assay, whilst untargeted complexes reached low levels at the same concentration (<25%). Transfection efficiencies of all lipoplexes in the asialoglycoprotein receptor-negative cell line HEK293 under the same conditions were low. Lipoplexes containing cholesteryl-β-d-galactopyranoside may therefore form the basis for the development of useful hepatotropic short interfering RNA delivery vectors.