SEARCH

SEARCH BY CITATION

Keywords:

  • element interactions;
  • heavy metal;
  • high-throughput cultivation method;
  • ionome;
  • legume

Abstract

Lotus japonicus was used to study the distribution and interconnections of 15 elements in plant tissues, including essential and non-essential elements: boron (B), sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), strontium (Sr), molybdenum (Mo), cadmium (Cd) and cesium (Cs). Large amounts of B and Ca accumulated in plant leaves, while Fe, Na, Ni, As and Cd tended to mainly occur in the roots, and Mo was the only element to accumulate in the stems. The elemental compositions within plants were severely disturbed by treatment with toxic elements. Competition between element pairs in the same group (e.g. K and Cs; Ca and Sr) was not found. Iron, Cu and Zn accumulation were induced by Cd and Ni addition. When natural variants grew in a nutrition solution with subtoxic levels of As, Cd, Cs, Ni, Mo and Sr, intriguing relationships between the elements (such as Fe, As and K; Mg and Ni; Mn and Ca) were revealed using principal-component analysis. This study on the plant ionome offers detailed information of element interactions and indicates that chemically different elements might be closely linked in uptake or translocation systems.