PETROLEUM PROSPECTIVITY OF CRETACEOUS FORMATIONS IN THE GONGOLA BASIN, UPPER BENUE TROUGH, NIGERIA: AN ORGANIC GEOCHEMICAL PERSPECTIVE ON A MIGRATED OIL CONTROVERSY

Authors


Email: ambello2002@yahoo.com; ambello@daad-alumni.de

Abstract

Organic geochemical studies of Cretaceous formations in the Gongola Basin, northern Nigeria, show TOC values that are generally higher than the minimum (0.5 wt %) required for hydrocarbon generation. Data from Rock-Eval pyrolysis and biomarker studies indicate the presence of both terrestrial and marine derived Types II and III organic matter, which is immature in the Gombe Formation and of marginal maturity in the Yolde Formation. Immature Type III to IV OM is present in the Pindiga Formation; and Type III OM, with a maturity that corresponds to the conventional onset (or perhaps peak) of oil generation occurs in the Bima Formation. However, Bima Formation samples from the 4710 – 4770 ft (1435.6 – 1453.9 m) depth interval within well Nasara-1 indicate Type I OM of perhaps lacustrine origin (H31R/H30 ratio generally ≤0.25).

Although the Nasara-1 well was reported to be dry, geochemical parameters (high TOCs, S1, S2 and Hls, low Tmax compared to adjacent samples, a bimodal S2 peak on the Rock-Eval pyrogram, a dominance of fluorinite macerals), together with generally low H3IR/H30 biomarker ratios within the 4710–4770 ft (1435.6–1453.9 m) interval, suggest the presence of migrated oil, perhaps sourced by lacustrine shales in the Albian Bima Formation located at as-yet unpenetrated depths.

The presence of the migrated oil in the Bima Formation and its possible lacustrine origin suggest that the petroleum system in the Gongola Basin is similar to that of the Termit, Doba and Doseo Basins of the Chad Republic, where economic oil reserves have been encountered.

Ancillary