SEARCH

SEARCH BY CITATION

Keywords:

  • body melanization;
  • desiccation;
  • latitude;
  • thermoregulation

Abstract

Melanism seems to have evolved independently through diverse mechanisms in various taxa and different ecological factors could be responsible for selective responses. Increased body melanization at higher altitudes as well as latitudes is generally considered to be adaptive for thermoregulation. Physiological traits such as body melanization and desiccation resistance have been investigated independently in diverse insect taxa at three levels: within populations, between populations and among species. A substantial number of Drosophila studies have reported clinal variations in both these traits along latitude. A possible link between these traits had remained unexplored in wild and laboratory populations of ectothermic insect taxa, including drosophilids, to date. Simultaneous analysis of these traits in assorted darker and lighter phenotypes in each population in the present study showed parallel changes for body melanization and desiccation resistance. The mechanistic basis of evolving desiccation resistance was explained on the basis of differential rates of water loss per hour in darker versus lighter phenotypes in six populations of Drosophila melanogaster from adjacent localities differing substantially in altitude all along the Indian subcontinent. Data on cuticular impermeability suggest a possible role of melanization in desiccation tolerance. However, substantial gaps remain in extending these results to other insect taxa and further exploring the physiological and molecular changes involved in melanization for conferring desiccation resistance.