SEARCH

SEARCH BY CITATION

Keywords:

  • California current marine ecosystem;
  • climate variability;
  • logistic growth;
  • oceanographic conditions;
  • pinniped population dynamics;
  • population recovery

Abstract

We investigated effects of marine climate variability on pinniped populations and assessed the initial stages of recovery following implementation of the U. S. Marine Mammal Protection Act (MMPA) based on long-term (1973-1997) population surveys at the South Farallon Islands and Point Reyes Peninsula, central California. California sea lions increased over the study period, with peak numbers observed during and after major El Niño events. The rate of increase for California sea lions appears to have decreased in recent years. Steller sea lions decreased at the South Farallon Islands and remain depleted at Point Reyes Peninsula. Harbor seal populations increased in a logistic and non-linear fashion at Point Reyes Peninsula and the South Farallon Islands, respectively. Harbor seals were more abundant at the South Farallon Islands during years of relatively high sea-surface temperature, which may be related to their inability to find sufficient prey in coastal waters under these conditions. Northern elephant seal abundance increased in a logistic fashion over the study period at both the South Farallon Islands and Point Reyes Peninsula; however, productivity at the South Farallon Islands decreased in recent years. Maximum haulout numbers for elephant seals at the South Farallon Islands increased in the 1970s, maintained an asymptote throughout the 1980s and early 1990s, but recently declined; additional studies are needed to investigate which age classes are associated with this decline. Protection afforded by the MMPA has facilitated partial to full recovery of all populations except for Steller sea lion. Oceanographic relationships do not appear to confound interpretations of population recovery and may help to explain changes in the Steller sea lion population.