POPULATION GENETIC STRUCTURE OF FINLESS PORPOISES, NEOPHOCAENA PHOCAENOIDES, IN CHINESE WATERS, INFERRED FROM MITOCHONDRIAL CONTROL REGION SEQUENCES

Authors


Abstract

Seven hundred and twenty base pairs (bp) of the mitochondrial control region from 73 finless porpoises, Neophocaena phocaenoides, in Chinese waters were sequenced. Thirteen variable sites were determined and 17 haplotypes were defined. Of these, 5 and 7 were found only in the Yellow Sea population and the South China Sea population, respectively, whereas no specific haplo-type was found in the Yangtze River population. Phylogenetic analyses using NJ and ML algorithm did not divide the haplotypes into monophyletic clades representing recognized geographic populations of finless porpoises in Chinese waters, suggesting the existence of migration and gene flow among populations. Analysis of molecular variance showed the obvious population genetic structure (φst= 0.41, P < 0.05); however, the structure was mainly between either the Yangtze River population or the Yellow Sea population and the South China Sea population. The genetic diversity (nucleotide diversity and haplotypic diversity) of the Yellow Sea population was significantly higher than those of the Yangtze River population and the South China Sea population, suggesting the relatively later divergence of the latter two populations and supporting the Yellow Sea population as the original center of Neophocaena.

Ancillary