The behavioral context of common dolphin (Delphinus sp.) vocalizations



Correlations between surface behavior and concurrent underwater vocalizations were modeled for common dolphins (Delphinus spp.) in the Southern California Bight (SCB) over multiple field seasons. Clicks, pulsed calls, and whistles were examined, with a total of 50 call features identified. Call features were used to classify behavior using random forest decision trees, with rates of correct classification reaching 80.6% for fast travel, 84.6% for moderate travel, 59.8% for slow travel, and 58% for foraging behavior. Common dolphins spent most of their time traveling. The highest number of clicks, pulsed calls, and complex whistles were produced during fast travel. In contrast, during foraging there were few pulsed calls and whistles produced, and the whistles were simple with narrow bandwidths and few harmonics. Behavior and vocalization patterns suggest nocturnal foraging in offshore waters as the primary feeding strategy. Group size and spacing were strongly correlated with behavior and rates of calling, with higher call rates in dispersed traveling groups and lower call rates in loosely aggregated foraging groups. These results demonstrate that surface behavior can be classified using vocalization data, which builds the framework for behavioral studies of common dolphins using passive acoustic monitoring techniques.