SEARCH

SEARCH BY CITATION

REFERENCES

  • Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006). Passive propulsion in vortex wakes. Journal of Fluid Mechanics 549, 385402.
  • Bleckmann H (1985). Discrimination between prey and non-prey wave signals in the fishing spider Dolomedes triton (Pisauridae). In: KalmringK, ElsnerN eds. Acoustic and Vibrational Communication in Insects. Paul Parey, Berlin , pp. 21522.
  • Bleckmann H (1993). Role of the lateral line and fish behavior. In: PitcherTJ ed. Behaviour of Teleost Fishes, 2nd edn. Chapman and Hall, London , New York , Tokyo , pp. 20146.
  • Bleckmann H (1994). Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. In: RathmayerW ed. Progress in Zoology, Vol. 41, 1st edn. Gustav Fischer, Stuttgart , Jena , New York , pp. 1115.
  • Bleckmann H (2004). 3-D-orientation with the octavolateralis system. Journal of Physiology-Paris 98, 5363.
  • Bleckmann H (2007). Peripheral and central processing of lateral line information. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 194, 14558.
  • Bleckmann H, Münz H (1990). Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behavior and Evolution 35, 24050.
  • Bleckmann H, Topp G (1981). Surface wave sensitivity of the lateral line organs of the topminnow. Aplocheilus lineatus Naturwissenschaften 68, 6245.
  • Bleckmann H, Zelick R (1993). The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 172, 11528.
  • Bleckmann H, Waldner I, Schwartz E (1981). Frequency discrimination of the surface-feeding fish Aplocheilus lineatus – a prerequisite for prey localization? Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 143, 48590.
  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989). The lateral line system of surface-feeding fish: anatomy, physiology, and behavior. In: CoombsS, GörnerP, MünzH eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York , pp. 50126.
  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991a). The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 168, 74957.
  • Bleckmann H, Niemann U, Fritzsch B (1991b). Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp, Journal of Comparative Neurology 314, 45266.
  • Burt de Perera T (2004a). Fish can encode order in their spatial map. Proceedings of the Royal Society of London Series B-Biological Sciences 271, 21314.
  • Burt de Perera T (2004b). Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Ast-yanax fasciatus, Animal Behaviour 68, 2915.
  • Campenhausen Cv, Riess I, Weissert R (1981). Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 143, 36974.
  • Carton AG, Montgomery JC (2002). Responses of lateral line receptors to water flow in the Antarctic notothenoid, Trematomus bernacchii, Polar Biology 25, 78993.
  • Chagnaud BP, Bleckmann H, Hofmann MH (2007a). Lateral line nerve fibers do not respond to bulk water flow direction. Zoology 111, 20417.
  • Chagnaud BP, Hofmann MH, Mogdans J (2007b). Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions. Journal of Comparative Physiology A - Sensory Neural and Behavioral Physiology 193, 24963.
  • Chagnaud BP, Brücker C, Hofmann MH, Bleckmann H (2008). Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations. Journal of Neuroscience 28, 447987.
  • Coombs S, Finneran JJ, Conley RA (2000). Hydrodynamic imaging formation by the lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi, Philosophical Transactions of the Royal Society of Biological Sciences 355, 11114.
  • Coombs S, Janssen J (1989). Water flow detection by the mechanosensory lateral line. In: StebbinsWC, BerkleyM eds. Comparative Perception. John Wiley, New York , pp. 89123.
  • Coombs S, Janssen J, Webb JF (1988). Diversity of lateral line systems: evolutionary and functional considerations. In: AtemaJ, FayRR, PopperAN, TavolgaWN eds. Sensory Biology of Aquatic Animals. Springer, New York , pp. 55393.
  • Curcic-Blake B, Van Netten SM (2006). Source localization encoding in the fish lateral line. Journal of Experimental Biology 209, 154859.
  • Denton EJ, Gray JAB (1988). Mechanical factors in the excitation of lateral line canals. In: AtemaJ, FayRR, PopperAN, TavolgaWN eds. Sensory Biology of Aquatic Animals. Springer, New York , pp. 595617.
  • Denton EJ, Gray JAB (1989). Some observations on the forces acting on neuromasts in fish lateral line canals. In: CoombsS, GörnerP, MünzH eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York , pp. 22946.
  • Elepfandt A, Wiedemer L (1987). Lateral-line responses to water surface waves in the clawed frog, Xenopus laevis. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 160, 66782.
  • Engelmann J, Bleckmann H (2004). Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology 107, 13551.
  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000). Hydrodynamic stimuli and the fish lateral line. Nature 408, 512.
  • Engelmann J, Hanke W, Bleckmann H (2002a). Lateral line reception in still and running water. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 188, 51326.
  • Engelmann J, Kröther S, Mogdans J, Bleckmann H (2002b). Responses of primary and secondary lateral line units to dipole stimuli applied under still and running water conditions. Bioacoustics 12, 15860.
  • Enger PS, Kalmijn AJ, Sand O (1989). Behavioral investigations on the functions of the lateral line and inner ear in predation. In: CoombsS, GörnerP, MünzH eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York , pp 57587.
  • Flock A (1965). Electronmicroscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngologica 199, 190.
  • Flock A, Wersäll J (1962) A study of the orientation of sensory hairs of the receptor cells in the lateral line organ of a fish with special reference to the function of the receptors. Journal of Cell Biology 15, 1927.
  • Görner P, Mohr C (1989). Stimulus localization in Xenopus: role of directional sensitivity of lateral line stitches. In: CoombsS, GörnerP, MünzH eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York , pp 54360.
  • Goulet J, Engelmann J, Chagnaud BP, Franosch J-MP, Suttner MD, Van Hemmen JL (2008). Object localization through the lateral line system of fish: theory and experiment. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 194, 117.
  • Hanke W, Bleckmann H (2004). The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. Journal of Experimental Biology 207, 158596.
  • Hanke W, Brücker C, Bleckmann H (2000). The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. Journal of Experimental Biology 203, 1193200.
  • Harris GG, Bergeijk WAv (1962). Evidence that the lateral line organ responds to near-field displacements of sound sources in water. Journal of the Acoustical Society of America 34, 183141.
  • Hassan ES (1992). Mathematical description of the stimuli to the lateral line system for fish, derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface. Biological Cybernetics 66, 44352.
  • Herberholz J, Schmitz B (2001). Signaling via water currents in behavioral interactions of snapping shrimp (Alpheus heterochaelis). Biology Bulletin 201, 616.
  • Hoin-Radkovski I, Bleckmann H, Schwartz E (1984). Determination of source distance in the surface-feeding fish Pantodon buchholzi (Pantodontidae). Animal Behaviour 32, 84051.
  • Janssen J (2004). Lateral line sensory ecology. In: Von Der EmdeG, MogdansJ, KapoorBG eds. The Senses of Fish. Adaptations for the Reception of Natural Stimuli. Narosa Publishing House, New Delhi , pp. 23164.
  • Kalmijn AJ (1988a). Detection of weak electric fields. In: AtemaJ, FayRR, PopperAN, TavolgaWN eds. Sensory Biology of Aquatic Animals. Springer, New York , pp. 15186.
  • Kalmijn AJ (1988b). Hydrodynamic and acoustic field detection. In: AtemaJ, FayRR, PopperAN, TavolgaWN eds. Sensory Biology of Aquatic Animals. Springer, New York , pp 83130.
  • Kanter MJ, Coombs S (2003). Rheotaxis and prey detection in uniform currents by Lake Michigan mottled sculpin (Cottus bairdii). Journal of Experimental Biology 206, 5970.
  • Kaus S, Schwartz E (1986). Reaction of young Betta splendens to surface waves of the water. In: BarthFG, SeyfarthEA eds. Verhandlungen der Deutschen Zoologischen Gesellschaft. Gustav Fischer, Stuttgart , pp. 21819.
  • Kesel A, Blickhan R, Nachtigall W (1989). Ablation of posterior lateral line organ. Does it affect steady swimming? In: ElsnerN, SingerW eds. Dynamics and Plasticity in Neuronal Systems. Georg Thieme, Stuttgart , pp. 265.
  • Kroese ABA, Schellart NAM (1992). Velocity- and acceleration-sensitive units in the trunk lateral line of the trout. Journal of Neurophysiology 68, 221221.
  • Kroese ABA, Van Netten SM (1989). Sensory transduction in lateral line hair cells. In: CoombsS, GörnerP, MünzH eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York , pp. 26584.
  • Kröther S, Mogdans J, Bleckmann H (2002). Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. Journal of Experimental Biology 205, 147184.
  • Lang HH (1980). Surface wave discrimination between prey and nonprey by the back swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behavioral Ecology and Sociobiology 6, 23346.
  • Liao JC (2006). The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. Journal of Experimental Biology 209, 407790.
  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003). The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology 206, 105973.
  • McCormick CA (1981). Comparative neuroanatomy of the octavolateralis area of fishes. In: TavolgaWN, PopperAN, FayRR eds. Hearing and Sound Communication in Fishes. Springer, New York , pp 37582.
  • McCormick CA, Hernandez DV (1996). Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behavior and Evolution 47, 11338.
  • Mogdans J, Bleckmann H (1998). Responses of the goldfish trunk lateral line to moving objects. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 182, 65976.
  • Mogdans J, Bleckmann H (1999). Peripheral lateral line responses to amplitude modulated hydrodynamic stimuli. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 18, 17380.
  • Mogdans J, Kröther S, Engelmann J (2004). Neurobiology of the fish lateral line: adaptations for the detection of hydrodynamic stimuli in running water. In: Von Der EmdeG, MogdansJ, KapoorGB eds. The Senses of Fish. Adaptations for the Reception of Natural Stimuli. Narosa Publishing House, New Delhi , pp. 26587.
  • Mohr C, Bleckmann H (1998). Electrophysiology of the cephalic lateral line of the surface-feeding fish Aplocheilus lineatus. Comparative Biochemistry and Physiology 119A, 80715.
  • Montgomery JC, Coombs S, Janssen J (1994). Form and function relationships in the lateral line systems: comparative data from six species of antarctic notothenioid fish. Brain Behavior and Evolution 44, 299306.
  • Montgomery JC, Baker CF, Carton AG (1997). The lateral line can mediate rheotaxis in fish. Nature 389, 96063.
  • Montgomery JC, Garton G, Voigt R, Baker C, Diebel C (2000). Sensory processing of water currents by fishes. Philosophical Transactions of the Royal Society of London B 355, 13257.
  • Müller HM, Fleck A, Bleckmann H (1996). The responses of central octavolateralis cells to moving sources. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 179, 45571.
  • Münz H (1985). Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 157, 55568.
  • Pillapakkam SB, Barbier C, Humphrey AC, Rüter A, Otto B, Bleckmann H, Hanke W (2007). Experimental and numerical investigation of a fish artificial lateral line canal. In: 5th International Symposium on Turbulence and Shear Flow Phenomena. TU München, München , pp. 16.
  • Plachta D, Hanke W, Bleckmann H (2003). A hydrodynamic topographic map and two hydrodynamic sub-systems in a vertebrate brain. Journal of Experimental Biology 206, 347986.
  • Plachta D, Mogdans J, Bleckmann H (1999). Responses of midbrain lateral line units of the goldfish, Carassius auratus, to constant-amplitude and amplitude modulated water wave stimuli. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 185, 40517.
  • Pohlmann K, Grasso FW, Breithaupt T (2001). Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proceeding of the National Academy of Sciences 98, 73714.
  • Pohlmann K, Atema J, Breithaupt T (2004). The importance of the lateral line in nocturnal predation of piscivorous catfish. Journal of Experimental Biology 207, 29718.
  • Puzdrowski RL (1989). Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus, Brain Behavior and Evolution 34, 11031.
  • Romero A, Paulson KM (2001). It's a wonderful hypogean life: a guide to the troglomorphic fishes of the world. Environmental Biology of Fishes 62, 1341.
  • Sand O (1981). The lateral line and sound reception. In: TavolgaWN, PopperAN, FayRR eds. Hearing and Sound Communication in Fishes. Springer, New York , pp. 45980.
  • Satou M, Shiraishi A, Matsushima T, Okumoto N (1991). Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 168, 41728.
  • Schmitz A, Bleckmann H, Mogdans J (2008). Organization of the superficial neuromast system in goldfish, Carassius auratus. Journal of Morphology 269, 75161.
  • Schwartz E (1970). Ferntastsinnesorgane von Oberflächenfischen. Z Morphol Tiere 67, 4057.
  • Sutterlin AM, Waddy S (1975). Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). Journal of the Fisheries Research Board of Canada 32, 24416.
  • Teyke T (1989). Learning and remembering the environment in the blind cave fish Anoptichthys jordani. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 164, 65562.
  • Van Netten SM (2006). Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biological Cybernetics 94, 6785.
  • Van Netten SM, Khanna SM (1993). Mechanical demodulation of hydrodynamic stimuli performed by the lateral line organ. In: AllumJHJ, Allum-MecklenburgDJ, HarrisFP, ProbstR eds. Progress in Brain Research. Elsevier, Amsterdam , pp. 4551.
  • Van Netten SM, Wiersinga-Post C (2002). Matched peripheral filtering in the lateral line organ and relation to temperature. Bioacoustics 12, 1536.
  • Vogel D, Bleckmann H (1997). Surface wave discrimination in the topminnow Aplocheilus lineatus. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 180, 67181.
  • Vogel D, Bleckmann H (2000). Behavioral discrimination of water motions caused by moving objects. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 186, 110717.
  • Voigt R, Carton AG, Montgomery JC (2000). Responses of anterior lateral line afferent neurones to water flow. Journal of Experimental Biology 203, 2495502.
  • Waldner I (1981). Habituation von Aplocheilus lineatus auf Oberflächenwellen des Wassers (thesis). University of Gießen.
  • Webb JF (1989a). Developmental constraints and evolution of the lateral line system in teleost fishes. In: CoombsS, GörnerP, MünzH eds. The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer, New York , pp. 7998.
  • Webb JF (1989b). Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behavior and Evolution 33, 3453.
  • Weeg MS, Bass A (2002). Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity. Journal of Neurophysiology 88, 125262.
  • Weissert R, Von Campenhausen C (1981). Discrimination between stationary objects by the blind cave fish, Anoptichthys jordani. Journal of Comparative and Physiology A-Sensory Neural and Behavioral Physiology 143, 37582.
  • Wojtenek W, Mogdans J, Bleckmann H (1998). The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101, 6982.
  • Wullimann MF (1998). The central nervous system. In: EvansDH ed. The Physiology of Fishes, 2nd edn. CRC Press, New York , pp. 24582.