Abstract: This paper describes a hypothesis that attempts to account for how changes in noradrenergic systems in the brain can affect depression-related behaviors and symptoms. It is hypothesized that increased activity of the locus coeruleus (LC) neurons, the principal norepinephrine (NE)-containing cells in the brain, causes release of galanin (GAL) in the ventral tegmentum (VTA) from LC axon terminals in which GAL is colocalized with NE. It is proposed that GAL release in VTA inhibits the activity of dopaminergic cell bodies in this region whose axons project to forebrain, thereby resulting in two of the principal symptoms seen in depression, decreased motor activation and decreased appreciation of pleasurable stimuli (anhedonia). The genesis of this hypothesis, which derives from studies using an animal model of depression, is described as well as recent data consistent with the hypothesis. The formulation proposed suggests that GAL antagonists may be of therapeutic benefit in the treatment of depression.