An Osteoblast-dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion

Authors

Errata

This article is corrected by:

  1. Errata: Corrigendum for Ann. N. Y. Acad. Sci. 1173 S1: E20–E30 Volume 1234, 174, Article first published online: 11 October 2011

Address for correspondence. Gerard Karsenty. gk2172@columbia.edu

Abstract

Our work focuses on genetic and molecular mechanisms for the reciprocal regulation of bone and energy metabolism orchestrated by leptin and osteocalcin. In the context of this reciprocal regulation, the finding that leptin inhibits insulin secretion by β cells while osteocalcin favors it is surprising. In exploring the molecular bases of this paradox we found that leptin, as is the case for most of its functions, uses a neuronal relay to inhibit insulin secretion. Cell-specific gene-deletion experiments revealed that a component of this neuronal regulation is the sympathetic innervation to osteoblasts. Under the control of leptin the sympathetic tone favors expression in osteoblasts of Esp, which inhibits the metabolic activity of osteocalcin. We further identify ATF4 as a transcription factor that regulates Esp expression and thereby insulin secretion and sensitivity. Taken together these data illustrate the tight connections between bone remodeling and energy metabolism and add further credence to the notion that the osteoblast is a bona fide endocrine cell type.

Ancillary