• 1
    Forlenza, G.P., N.M. Paradise Black, E.G. McNamara & S.E. Sullivan. 2010. Ankyloglossia, exclusive breastfeeding, and failure to thrive. Pediatrics 125: e1500e1504.
  • 2
    Peng, H. & W. Hagopian. 2006. Environmental factors in the development of Type 1 diabetes. Rev. Endocr. Metab. Disord. 7: 149162.
  • 3
    Hu, F.B. 2011. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34: 12491257.
  • 4
    International Diabetes Federation. IDF Diabetes Atlas. Epidemiology and Morbidity. In International Diabetes Federation. Available from:
  • 5
    Sweat, V., J.M. Bruzzese, S. Albert, et al . 2011. The Banishing Obesity and Diabetes in Youth (BODY) Project: description and feasibility of a program to halt obesity-associated disease among urban high school students. J. Community Health. In press.
  • 6
    Kislinger, T., C. Fu, B. Huber, et al . 1999. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J. Biol. Chem. 274: 3174031749.
  • 7
    Hofmann, M.A., S. Drury, C. Fu, et al . 1999. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97: 889901.
  • 8
    Taguchi, A., D.C. Blood, G. del Toro, et al . 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405: 354360.
  • 9
    Moss, S.E., R. Klein & B.E. Klein. 1991. Cause-specific mortality in a population-based study of diabetes. Am. J. Public. Health 81: 11581162.
  • 10
    Nathan, D.M., P.A. Cleary, J.Y. Backlund, et al . & G. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research. 2005. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353: 26432653.
  • 11
    Khaw, K.T., N. Wareham, S. Bingham, et al . 2004. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann. Intern. Med. 141: 413420.
  • 12
    Action to Control Cardiovascular Risk in Diabetes Study Group, H.C. Gerstein, M.E. Miller, R.P. Byington, et al . 2008. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358: 25452559.
  • 13
    ACCORD Study Group, H.C. Gerstein, M.E. Miller, S. Genuth, et al . 2011. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N. Engl. J. Med. 364: 818828.
  • 14
    ADVANCE Collaborative Group, A. Patel, S. MacMahon, J. Chalmers, et al . 2008. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358: 25602572.
  • 15
    Duckworth, W., C. Abraira, T. Moritz, et al . 2009. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 360: 129139.
  • 16
    Zoungas, S., A. Patel, J. Chalmers, et al . 2010. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363: 14101418.
  • 17
    Cipollone, F., A. Iezzi, M. Fazia, et al . 2003. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation 108: 10701077.
  • 18
    Park, L., K.G. Raman, K.J. Lee, et al . 1998. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med. 4: 10251031.
  • 19
    Bucciarelli, L.G., T. Wendt, W. Qu, et al . 2002. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation 106: 28272835.
  • 20
    Wendt, T., E. Harja, L. Bucciarelli, et al . 2006. RAGE modulates vascular inflammation and atherosclerosis in a murine model of type 2 diabetes. Atherosclerosis 185: 7077.
  • 21
    Harja, E., D.X. Bu, B.I. Hudson, et al . 2008. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J. Clin. Invest. 118: 183194.
  • 22
    Soro-Paavonen, A., A.M. Watson, J. Li, et al . 2008. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57: 24612469.
  • 23
    Sun, L., T. Ishida, T. Yasuda, et al . 2009. RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in nondiabetic LDL receptor-deficient mice. Cardiovasc. Res. 82: 371381.
  • 24
    Bu, D.X., V. Rai, X. Shen, et al . 2010. Activation of the ROCK1 branch of the transforming growth factor-beta pathway contributes to RAGE-dependent acceleration of atherosclerosis in diabetic ApoE-null mice. Circ. Res. 106: 10401051.
  • 25
    Morris-Rosenfeld, S., E. Blessing, M.R. Preusch, et al . 2011. Deletion of bone marrow-derived receptor for advanced glycation end products inhibits atherosclerotic plaque progression. Eur. J. Clin. Invest. 41: 11641171.
  • 26
    Bucciarelli, L.G., R. Ananthakrishnan, Y.C. Hwang, et al . 2008. RAGE and modulation of ischemic injury in the diabetic myocardium. Diabetes 57: 19411951.
  • 27
    Shang, L., R. Ananthakrishnan, Q. Li, et al . 2010. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways. PLoS One 5: e10092.
  • 28
    Wang, L.J., L. Lu, F.R. Zhang, et al . 2011. Increased serum high-mobility group box-1 and cleaved receptor for advanced glycation endproducts levels and decreased endogenous secretory receptor for advanced glycation endproducts levels in diabetic and nondiabetic patients with heart failure. Eur. J. Heart Fail. 13: 440449.
  • 29
    Ma, H., S.Y. Li, P. Xu, et al . 2009. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J. Cell. Mol. Med. 13: 17511764.
  • 30
    Nielsen, J.M., S.B. Kristiansen, R. Nørregaard, et al . 2009. Blockage of receptor for advanced glycation end products prevents development of cardiac dysfunction in db/db type 2 diabetic mice. Eur. J. Heart Fail. 11: 638647.
  • 31
    Petrova, R., Y. Yamamoto, K. Muraki, et al . 2002. Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J. Mol. Cell. Cardiol. 34: 14251431.
  • 32
    Aleshin, A., R. Ananthakrishnan, Q. Li, et al . 2008. RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am. J. Physiol. Heart Circ. Physiol. 294: H1823H1832.
  • 33
    Andrassy, M., H.C. Volz, J.C. Igwe, et al . 2008. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117: 32163226.
  • 34
    Falcone, C., E. Emanuele, A. D’Angelo, et al . 2005. Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler. Thromb. Vasc. Biol. 25: 10321037.
  • 35
    Colhoun, H.M., D.J. Betteridge, P. Durrington, et al . 2011. Total soluble and endogenous secretory receptor for advanced glycation endproducts as predictive biomarkers of coronary heart disease risk in patients with type 2 diabetes: an analysis from the CARDS trial. Diabetes 60: 23792385.
  • 36
    Tam, H.L., S.W. Shiu, Y. Wong, et al . 2010. Effects of atorvastatin on serum soluble receptors for advanced glycation end-products in type 2 diabetes. Atherosclerosis 209: 173177.
  • 37
    Santilli, F., L. Bucciarelli, D. Noto, et al . 2007. Decreased plasma soluble RAGE in patients with hypercholesterolemia: effects of statins. Free Radic. Biol. Med. 43: 12551262.
  • 38
    Wilson, C. 2011. Cardiovascular endocrinology: RAGE-a biomarker for CHD in T2DM? Nat. Rev. Endocrinol. 7: 561.
  • 39
    Kalousová, M., M. Hodková, M. Kazderová, et al . 2006. Soluble receptor for advanced glycation end products in patients with decreased renal function. Am. J. Kidney Dis. 47: 406411.
  • 40
    Cuccurullo, C., A. Iezzi, M.L. Fazia, et al . 2006. Suppression of RAGE as a basis of simvastatin-dependent plaque stabilization in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 26: 27162723.
  • 41
    Liang, Y.J., S.A. Chen & J.H. Jian. 2011. Peroxisome proliferator-activated receptor delta downregulates the expression of the receptor for advanced glycation end products and pro-inflammatory cytokines in the kidney of streptozotocin-induced diabetic mice. Eur. J. Pharm. Sci. 43: 6570.
  • 42
    Ishibashi, Y., Y. Nishino, T. Matsui, et al . 2011. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism 60: 12711277.
  • 43
    Wang, L., X. Zhang, L. Liu, et al . 2010. Atorvastatin protects rat brains against permanent focal ischemia and downregulates HMGB1, HMGB1 receptors (RAGE and TLR4), NF-kappaB expression. Neurosci. Lett. 471: 152156.
  • 44
    Ritz, E. & S.R. Orth. 1999. Nephropathy in patients with type 2 diabetes mellitus. N. Engl. J. Med. 341: 11271133.
  • 45
    U.S. Renal Data System. 2004. USRDS 2004 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. National Institutes of Health, National Institute of Diabetes an Digestive and Kidney Diseases, Bethesda , MD , USA .
  • 46
    Bolton, W.K., D.C. Cattran, M.E. Williams, et al. & ACTION I Investigator Group. 2004. Randomized trial of an inhibitor of formation of advanced glycation end products in diabetic nephropathy. Am. J. Nephrol. 24: 3240.
  • 47
    Tanji, N., G.S. Markowitz, C. Fu, et al . 2000. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J. Am. Soc. Nephrol. 11: 16561666.
  • 48
    Wendt, T.M., N. Tanji, J. Guo, et al . 2003. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am. J. Pathol. 162: 11231137.
  • 49
    Jensen, L.J., L. Denner, B.F. Schrijvers, et al . 2006. Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J. Endocrinol. 188: 493501.
  • 50
    Flyvbjerg, A., L. Denner, B.F. Schrijvers, et al . 2004. Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53: 166172.
  • 51
    Reiniger, N., K. Lau, D. McCalla, et al . 2010. Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes 59: 20432054.
  • 52
    Chung, A.C., H. Zhang, Y.Z. Kong, et al . 2010. Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J. Am. Soc. Nephrol. 21: 249260.
  • 53
    Rüster, C., S. Franke, U. Wenzel, et al . 2011. Podocytes of AT2 receptor knockout mice are protected from angiotensin II-mediated RAGE induction. Am. J. Nephrol. 34: 309317.
  • 54
    Li, J. & A.M. Schmidt. 1997. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J. Biol. Chem. 272: 1649816506.
  • 55
    Schmidt, A.M., O. Hori, J.X. Chen, et al . 1995. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 96: 13951403.
  • 56
    Chang, J.S., T. Wendt, W. Qu, et al . 2008. Oxygen deprivation triggers upregulation of early growth response-1 by the receptor for advanced glycation end products. Circ. Res. 102: 905913.
  • 57
    Bierhaus, A., S. Schiekofer, M. Schwaninger, et al . 2001. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50: 27922808.
  • 58
    Kislinger, T., N. Tanji, T. Wendt, et al . 2001. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 21: 905910.
  • 59
    Christaki, E., S.M. Opal, J.C. Keith, Jr., et al . 2011. A monoclonal antibody against RAGE alters gene expression and is protective in experimental models of sepsis and pneumococcal pneumonia. Shock 35: 492498.
  • 60
    van Zoelen, M.A., K.F. van der Sluijs, A. Achouiti, et al . 2009. Receptor for advanced glycation end products is detrimental during influenza A virus pneumonia. Virology 391: 265273.
  • 61
    van Zoelen, M.A., M. Schouten, A.F. de Vos, et al . 2009. The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. J. Immunol. 182: 43494356.
  • 62
    Ramsgaard, L., J.M. Englert, M.L. Manni, et al . 2011. Lack of the receptor for advanced glycation end-products attenuates E. coli pneumonia in mice. PLoS One 6: e20132.
  • 63
    Lutterloh, E.C., S.M. Opal, D.D. Pittman, et al . 2007. Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection. Crit. Care 11: R122.
  • 64
    Schmidt, A.M., E. Weidman, E. Lalla, et al . 1996. Advanced glycation endproducts (AGEs) induce oxidant stress in the gingiva: a potential mechanism underlying accelerated periodontal disease associated with diabetes. J. Periodont. Res. 31: 508515.
  • 65
    Lalla, E., I.B. Lamster, M. Feit, et al . 2000. Blockade of RAGE suppresses periodontitis-associated bone loss in diabetic mice. J. Clin. Invest. 105: 11171124.
  • 66
    Pollreisz, A., B.I. Hudson, J.S. Chang, et al . 2010. Receptor for advanced glycation endproducts mediates pro-atherogenic responses to periodontal infection in vascular endothelial cells. Atherosclerosis 212: 451456.
  • 67
    Riehl, A., T. Bauer, B. Brors, et al . 2010. Identification of the Rage-dependent gene regulatory network in a mouse model of skin inflammation. BMC Genom. 11: 537.
  • 68
    Gao, J., Y. Shao, W. Lai, et al . 2010. Association of polymorphisms in the RAGE gene with serum CRP levels and coronary artery disease in the Chinese Han population. J. Hum. Genet. 55: 668675.
  • 69
    Chen, Y., S.S. Yan, J. Colgan, et al . 2004. Blockade of late stages of autoimmune diabetes by inhibition of the receptor for advanced glycation end products. J. Immunol. 173: 13991405.
  • 70
    Moser, B., M.J. Szabolcs, H.J. Ankersmit, et al . 2007. Blockade of RAGE suppresses alloimmune reactions in vitro and delays allograft rejection in murine heart transplantation. Am. J. Transplant. 7: 293302. Erratum in Am. J. Transplant. 2007 May; 2007(2005): 1318.
  • 71
    Moser, B., D.D. Desai, M.P. Downie, et al . 2007. Receptor for advanced glycation end products expression on T cells contributes to antigen-specific cellular expansion in vivo. J. Immunol. 179: 80518058.
  • 72
    Lee, B.W., H.Y. Chae, S.J. Kwon, et al . 2010. RAGE ligands induce apoptotic cell death of pancreatic beta-cells via oxidative stress. Int. J. Mol. Med. 26: 813818.
  • 73
    Zhu, Y., T. Shu, Y. Lin, et al . 2011. Inhibition of the receptor for advanced glycation endproducts (RAGE) protects pancreatic beta-cells. Biochem. Biophys. Res. Commun. 404: 159165.
  • 74
    Shu, T., Y. Zhu, H. Wang, et al . 2011. AGEs decrease insulin synthesis in pancreatic beta-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One 6: e18782.
  • 75
    Neeper, M., A.M. Schmidt, J. Brett, et al . 1992. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem. 267: 1499815004.
  • 76
    Leclerc, E., G. Fritz, S.W. Vetter & C.W. Heizmann. 2009. Binding of S100 proteins to RAGE: an update. Biochim. Biophys. Acta 1793: 9931007.
  • 77
    Koch, M., S. Chitayat, B.M. Dattilo, et al . 2010. Structural basis for ligand recognition and activation of RAGE. Structure 18: 13421352.
  • 78
    Park, H., F.G. Adsit & J.C. Boyington. 2010. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J. Biol. Chem. 285: 4076240770.
  • 79
    Xue, J., V. Rai, D. Singer, et al . 2011. Advanced glycation end product recognition by the receptor for AGEs. Structure 19: 722732.
  • 80
    Sarkany, Z., T. Ikonen, F. Ferreira-da-Silva, et al . 2011. Solution structure of the soluble receptor for advanced glycation end-products (sRAGE). J. Biol. Chem. 286: 37,52537,534.
  • 81
    Huttunen, H.J., C. Fages & H. Rauvala. 1999. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem. 274: 1991919924.
  • 82
    Lander, H.M., J.M. Tauras, J.S. Ogiste, et al . 1997. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272: 1781017814.
  • 83
    Huang, J.S., J.Y. Guh, H.C. Chen, et al . 2001. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J. Cell. Biochem. 81: 102113.
  • 84
    Yeh, C.H., L. Sturgis, J. Haidacher, et al . 2001. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50: 14951504.
  • 85
    Schmidt, A.M., M. Vianna, M. Gerlach, et al . 1992. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem. 267: 1498714997.
  • 86
    Hudson, B.I., A.Z. Kalea, M. Del Mar Arriero, et al . 2008. Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J. Biol. Chem. 283: 3445734468.
  • 87
    Krebs, A., M. Rothkegel, M. Klar & B.M. Jockusch. 2001. Characterization of functional domains of mDia1, a link between the small GTPase Rho and the actin cytoskeleton. J. Cell. Sci. 114: 36633672.
  • 88
    Tominaga, T., E. Sahai, P. Chardin, et al . 2000. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5: 1325.
  • 89
    Sakaguchi, M., H. Murata, K. Yamamoto, et al . 2011. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 6: e23132.
  • 90
    Young, K.G. & J.W. Copeland. 2010. Formins in cell signaling. Biochim. Biophys. Acta 1803: 183190.
  • 91
    Geneste, O., J.W. Copeland & R. Treisman. 2002. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157: 831838.
  • 92
    Copeland, J.W. & R. Treisman. 2002. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell. 13: 40884099.
  • 93
    Xu, Y., F. Toure, W. Qu, et al . 2010. Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J. Biol. Chem. 285: 2323323240.
  • 94
    Balasubbu, S., P. Sundaresan, A. Rajendran, et al . 2010. Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy. BMC Med. Genet. 11: 158.
  • 95
    Zong, H., M. Ward, A. Madden, et al . 2010. Hyperglycaemia-induced pro-inflammatory responses by retinal Muller glia are regulated by the receptor for advanced glycation end-products (RAGE). Diabetologia 53: 26562666.
  • 96
    Zhang, H.M., L.L. Chen, L. Wang, et al . 2009. Association of 1704G/T and G82S polymorphisms in the receptor for advanced glycation end products gene with diabetic retinopathy in Chinese population. J. Endocrinol. Invest. 32: 258262.
  • 97
    Barile, G.R. & A.M. Schmidt. 2007. RAGE and its ligands in retinal disease. Curr. Mol. Med. 7: 758765.
  • 98
    Kaji, Y., T. Usui, S. Ishida, et al . 2007. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest. Ophthalmol. Vis. Sci. 48: 858865.
  • 99
    Pachydaki, S.I., S.R. Tari, S.E. Lee, et al . 2006. Upregulation of RAGE and its ligands in proliferative retinal disease. Exp. Eye Res. 82: 807815.
  • 100
    Barile, G.R., S.I. Pachydaki, S.R. Tari, et al . 2005. The RAGE axis in early diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 46: 29162924.
  • 101
    Brussee, V., G. Guo, Y. Dong, et al . 2008. Distal degenerative sensory neuropathy in a long-term type 2 diabetes rat model. Diabetes 57: 16641673.
  • 102
    Toth, C., L.L. Rong, C. Yang, et al . 2008. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes 57: 10021017.
  • 103
    Haslbeck, K.M., E. Schleicher, A. Bierhaus, et al . 2005. The AGE/RAGE/NF-(kappa)B pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT). Exp. Clin. Endocrinol. Diabetes 113: 288291.
  • 104
    Bierhaus, A., K.M. Haslbeck, P.M. Humpert, et al . 2004. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Invest. 114: 17411751.
  • 105
    Berlanga, J., D. Cibrian, I. Guillen, et al . 2005. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds. Clin. Sci. 109: 8395.
  • 106
    Wear-Maggitti, K., J. Lee, A. Conejero, et al . 2004. Use of topical sRAGE in diabetic wounds increases neovascularization and granulation tissue formation. Ann. Plast. Surg. 52: 519521; Discussion 522.
  • 107
    Santana, R.B., L. Xu, H.B. Chase, et al . 2003. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes 52: 15021510.
  • 108
    Goova, M.T., J. Li, T. Kislinger, et al . 2001. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice. Am. J. Pathol. 159: 513525.
  • 109
    Ishihara, K., K. Tsutsumi, S. Kawane, et al . 2003. The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett. 550: 107113.