SEARCH

SEARCH BY CITATION

References

  • 1
    WHO. Assays for neutralizing antibody to influenza viruses. Report of an informal scientific workshop, Dresden, 18-19 March 2003. Wkly Epidemiol Rec 2003; 78:290293.
  • 2
    Stephenson I, Wood JM, Nicholson KG, Charlett A, Zambon MC. Detection of anti-H5 responses in human sera by HI using horse erythrocytes following MF59-adjuvanted influenza A/Duck/Singapore/97 vaccine. Virus Res 2004; 103:9195.
  • 3
    Wood JM, Robertson JS. From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol 2004; 2:842847.
  • 4
    Hoffmann E, Krauss S, Perez D, Webby R, Webster RG. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 2002; 20:31653170.
  • 5
    Temperton NJ, Chan PK, Simmons G et al. Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg Infect Dis 2005; 11:411416.
  • 6
    Kim YB, Lee MK, Han DP, Cho MW. Development of a safe and rapid neutralization assay using murine leukemia virus pseudotyped with HIV type 1 envelope glycoprotein lacking the cytoplasmic domain. AIDS Res Hum Retroviruses 2001; 17:17151724.
  • 7
    Bartosch B, Bukh J, Meunier JC et al. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc Natl Acad Sci USA 2003; 100:1419914204.
  • 8
    Sanders DA. No false start for novel pseudotyped vectors. Curr Opin Biotechnol 2002; 13:437442.
  • 9
    Zavada J, Rosenbergova M. Phenotypic mixing of vesicular stomatitis virus with fowl plague virus. Acta Virol 1972; 16:103114.
  • 10
    Hatziioannou T, Valsesia-Wittmann S, Russell SJ, Cosset FL. Incorporation of fowl plague virus hemagglutinin into murine leukemia virus particles and analysis of the infectivity of the pseudotyped retroviruses. J Virol 1998; 72:53135317.
  • 11
    Liu HL, Rong LJ, Zhou B, Wei JC, Zheng QS, Chen PY. Characterization of murine leukemia virus recombinants that express H5N1 subtype avian influenza virus hemagglutinin glycoproteins. Sheng Wu Gong Cheng Xue Bao 2005; 21:4751.
  • 12
    Szecsi J, Boson B, Johnsson P et al. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses. Virol J 2006; 3:70.
  • 13
    Kong WP, Hood C, Yang ZY et al. Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc Natl Acad Sci USA 2006; 103:1598715991.
  • 14
    Nefkens I, Garcia JM, Ling CS et al. Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J Clin Virol 2007; 39:2733.
  • 15
    Li KS, Guan Y, Wang J et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004; 430:209213.
  • 16
    Horimoto T, Kawaoka Y. Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol 2005; 3:591600.
  • 17
    Besnier C, Takeuchi Y, Towers G. Restriction of lentivirus in monkeys. Proc Natl Acad Sci U S A 2002; 99:1192011925.
  • 18
    Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O. A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A 2000; 97:1229512299.
  • 19
    Op De Beeck A, Voisset C, Bartosch B et al. Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 2004; 78:29943002.
  • 20
    Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272:263267.
  • 21
    Sandrin V, Boson B, Salmon P et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100:823832.
  • 22
    Stephenson I, Wood JM, Nicholson KG, Zambon MC. Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J Med Virol 2003; 70:391398.
  • 23
    Rowe T, Abernathy RA, Hu-Primmer J et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol 1999; 37:937943.
  • 24
    Nicholson KG, Colegate AE, Podda A et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a randomised trial of two potential vaccines against H5N1 influenza. Lancet 2001; 357:19371943.
  • 25
    Wan H, Perez DR. Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 2006; 346:278286.
  • 26
    Choi YK, Nguyen TD, Ozaki H et al. Studies of H5N1 influenza virus infection of pigs by using viruses isolated in Vietnam and Thailand in 2004. J Virol 2005; 79:1082110825.
  • 27
    Harvey R, Martin AC, Zambon M, Barclay WS. Restrictions to the adaptation of influenza a virus h5 hemagglutinin to the human host. J Virol 2004; 78:502507.
  • 28
    WHO. Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis 2005; 11:15151521.
  • 29
    Smith GJ, Naipospos TS, Nguyen TD et al. Evolution and adaptation of H5N1 influenza virus in avian and human hosts in Indonesia and Vietnam. Virology 2006; 350:258268.
  • 30
    Chen H, Smith GJ, Li KS et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A 2006; 103:28452850.