SEARCH

SEARCH BY CITATION

References

  • 1
    Zhou NN, Senne DA, Landgraf JS et al. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 1999; 73:88518856.
  • 2
    Karasin AI, Schutten MM, Cooper LA et al. Genetic characterization of H3N2 influenza viruses isolated from pigs in North America, 1977–1999: evidence for wholly human and reassortant virus genotypes. Virus Res 2000; 68:7185.
  • 3
    Webby RJ, Swenson SL, Krauss SL, Gerrish PJ, Goyal SM, Webster RG. Evolution of swine H3N2 influenza viruses in the United States. J Virol 2000; 74:82438251.
  • 4
    Karasin AI, Landgraf J, Swenson S et al. Genetic characterization of H1N2 influenza A viruses isolated from pigs throughout the United States. J Clin Microbiol 2002; 40:10731079.
  • 5
    Ma W, Gramer M, Rossow K, Yoon KJ. Isolation and genetic characterization of new reassortant H3N1 swine influenza virus from pigs in the midwestern United States. J Virol 2006; 80:50925096.
  • 6
    Vincent AL, Ma W, Lager KM, Gramer MR, Richt JA, Janke BH. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes 2009; 39:176185.
  • 7
    Ma W, Vincent AL, Gramer MR et al. Identification of H2N3 influenza A viruses from swine in the United States. Proc Natl Acad Sci USA 2007; 104:2094920954.
  • 8
    Garten RJ, Davis CT, Russell CA et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009; 325:197201.
  • 9
    Smith GJ, Vijaykrishna D, Bahl J et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009; 459:11221125.
  • 10
    Landolt GA, Karasin AI, Phillips L, Olsen CW. Comparison of the pathogenesis of two genetically different H3N2 influenza A viruses in pigs. J Clin Microbiol 2003; 41:19361941.
  • 11
    Landolt GA, Karasin AI, Schutten MM, Olsen CW. Restricted infectivity of a human-Lineage H3N2 influenza A virus in pigs is hemagglutinin and neuraminidase gene dependent. J Clin Microbiol 2006; 44:297301.
  • 12
    Busch MG, Bateman AC, Landolt GA et al. Identification of amino acids in the HA of H3 influenza viruses that determine infectivity levels in primary swine respiratory epithelial cells. Virus Res 2008; 133:269279.
  • 13
    Bateman AC, Karamanska R, Busch MG, Dell A, Olsen CW, Haslam SM. Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAc{alpha}2-6 glycans. J Biol Chem 2010; 285:3401634026.
  • 14
    Bateman AC, Busch MG, Karasin AI, Bovin N, Olsen CW. Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for alpha2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. J Virol 2008; 82:82048209.
  • 15
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci USA 2004; 101:46204624.
  • 16
    Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 2004; 78:1266512667.
  • 17
    Ibricevic A, Pekosz A, Walter MJ et al. Influenza virus receptor specificity and cell tropism in mouse and human airway epithelial cells. J Virol 2006; 80:74697480.
  • 18
    Thompson CI, Barclay WS, Zambon MC, Pickles RJ. Infection of human airway epithelium by human and avian strains of influenza a virus. J Virol 2006; 80:80608068.
  • 19
    Wan H, Perez DR. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol 2007; 81:51815191.
  • 20
    Ayora-Talavera G, Shelton H, Scull MA et al. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium. PLoS ONE 2009; 4:e7836.
  • 21
    Scull MA, Gillim-Ross L, Santos C et al. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways. PLoS Pathog 2009; 5:e1000424.
  • 22
    Gray TE, Guzman K, Davis CW, Abdullah LH, Nettesheim P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells. Am J Respir Cell Mol Biol 1996; 14:104112.
  • 23
    Schroth MK, Grimm E, Frindt P et al. Rhinovirus replication causes RANTES production in primary bronchial epithelial cells. Am J Respir Cell Mol Biol 1999; 20:12201228.
  • 24
    Sachs LA, Finkbeiner WE, Widdicombe JH. Effects of media on differentiation of cultured human tracheal epithelium. In Vitro Cell Dev Biol Anim 2003; 39:5662.
  • 25
    Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 1987; 262:15961601.
  • 26
    Nicholls JM, Chan RW, Russell RJ, Air GM, Peiris JS. Evolving complexities of influenza virus and its receptors. Trends Microbiol 2008; 16:149157.
  • 27
    Neumann G, Watanabe T, Ito H et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 1999; 96:93459350.
  • 28
    Reed L, Muench H. A simple method of estimating 50 percent endpoints. Am J Hyg 1938; 27:493497.
  • 29
    Matrosovich M, Matrosovich T, Uhlendorff J, Garten W, Klenk HD. Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology 2007; 361:384390.
  • 30
    Pickles RJ, McCarty D, Matsui H, Hart PJ, Randell SH, Boucher RC. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol 1998; 72:60146023.
  • 31
    Wallace P, Kennedy JR, Mendicino J. Transdifferentiation of outgrowth cells and cultured epithelial cells from swine trachea. In Vitro Cell Dev Biol 1994; 30:168.
  • 32
    Nettesheim P, Koo JS, Gray T. Regulation of differentiation of the tracheobronchial epithelium. J Aerosol Med 2000; 13:207218.
  • 33
    Lee HY, Dawson MI, Walsh GL et al. Retinoic acid receptor- and retinoid X receptor-selective retinoids activate signaling pathways that converge on AP-1 and inhibit squamous differentiation in human bronchial epithelial cells. Cell Growth Differ 1996; 7:9971004.
  • 34
    Gruenert DC, Finkbeiner WE, Widdicombe JH. Culture and transformation of human airway epithelial cells. Am J Physiol 1995; 268:L347L360.
  • 35
    Zhang L, Bukreyev A, Thompson CI et al. Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol 2005; 79:11131124.
  • 36
    Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 2000; 69:531569.
  • 37
    Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999; 258:120.
  • 38
    Wang G, Davidson BL, Melchert P et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia. J Virol 1998; 72:98189826.
  • 39
    Vermeer PD, McHugh J, Rokhlina T, Vermeer DW, Zabner J, Welsh MJ. Vaccinia virus entry, exit, and interaction with differentiated human airway epithelia. J Virol 2007; 81:98919899.
  • 40
    Yoon JH, Gray T, Guzman K, Koo JS, Nettesheim P. Regulation of the secretory phenotype of human airway epithelium by retinoic acid, triiodothyronine, and extracellular matrix. Am J Respir Cell Mol Biol 1997; 16:724731.
  • 41
    Wu R, Zhao YH, Chang MM. Growth and differentiation of conducting airway epithelial cells in culture. Eur Respir J 1997; 10:23982403.
  • 42
    Braiman A, Priel Z. Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobiol 2008; 163:202207.
  • 43
    Thompson AB, Robbins RA, Romberger DJ et al. Immunological functions of the pulmonary epithelium. Eur Respir J 1995; 8:127149.
  • 44
    Nelli RK, Kuchipudi SV, White GA, Perez BB, Dunham SP, Chang KC. Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res 2010; 6:4.
  • 45
    Trebbien R, Larsen LE, Viuff BM. Distribution of sialic acid receptors and influenza A virus of avian and swine origin in experimentally infected pigs. Virol J 2011; 8:434.
  • 46
    Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K. Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol J 2010; 7:38.
  • 47
    Stonebraker JR, Wagner D, Lefensty RW et al. Glycocalyx restricts adenoviral vector access to apical receptors expressed on respiratory epithelium in vitro and in vivo: role for tethered mucins as barriers to lumenal infection. J Virol 2004; 78:1375513768.
  • 48
    Thornton DJ, Gray T, Nettesheim P, Howard M, Koo JS, Sheehan JK. Characterization of mucins from cultured normal human tracheobronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1118L1128.
  • 49
    Gagneux P, Cheriyan M, Hurtado-Ziola N et al. Human-specific regulation of alpha 2-6-linked sialic acids. J Biol Chem 2003; 278:4824548250.
  • 50
    Baum LG, Paulson JC. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem Suppl 1990; 40:3538.
  • 51
    Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 1993; 29:155165.
  • 52
    Ito T, Couceiro JN, Kelm S et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 1998; 72:73677373.
  • 53
    Gambaryan AS, Karasin AI, Tuzikov AB et al. Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res 2005; 114:1522.
  • 54
    Bottcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol 2006; 80:98969898.
  • 55
    Chan RW, Yuen KM, Yu WC et al. Influenza H5N1 and H1N1 virus replication and innate immune responses in bronchial epithelial cells are influenced by the state of differentiation. PLoS ONE 2010; 5:e8713.
  • 56
    Dash P, Barnett PV, Denyer MS et al. Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells. J Virol 2010; 84:91499160.
  • 57
    Khoufache K, Cabaret O, Farrugia C et al. Primary in vitro culture of porcine tracheal epithelial cells in an air-liquid interface as a model to study airway epithelium and Aspergillus fumigatus interactions. Med Mycol 2010; 48:10491055.
  • 58
    Liu X, Luo M, Zhang L, Ding W, Yan Z, Engelhardt JF. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol 2007; 36:313323.
  • 59
    Lam E, Ramke M, Groos S, Warnecke G, Heim A. A differentiated porcine bronchial epithelial cell culture model for studying human adenovirus tropism and virulence. J Virol Methods 2011; 178:117123.
  • 60
    Kida H, Ito T, Yasuda J et al. Potential for transmission of avian influenza viruses to pigs. J Gen Virol 1994; 75:21832188.
  • 61
    Landolt GA, Olsen CW. Up to new tricks – a review of cross-species transmission of influenza A viruses. Anim Health Res Rev 2007; 8:121.
  • 62
    Brown IH. The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol 2000; 74:2946.
  • 63
    Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH. Differentiated structure and function of cultures from human tracheal epithelium. Am J Physiol 1992; 262:L713L724.
  • 64
    Rogers CS, Stoltz DA, Meyerholz DK et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008; 321:18371841.
  • 65
    Flotte TR, Ng P, Dylla DE et al. Viral vector-mediated and cell-based therapies for treatment of cystic fibrosis. Mol Ther 2007; 15:229241.
  • 66
    Ostedgaard LS, Rokhlina T, Karp PH et al. A shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia. Proc Natl Acad Sci USA 2005; 102:29522957.