• 1
    Adams S, Green P, Claxton R, Simcox S, Williams MV, Walsh K, Leewenburgh C (2001) Reactive carbonyl formation by oxidative and non-oxidative pathways. Front Biosci 6:A17A24.
  • 2
    Aksenov M, Aksenova M, Butterfield DA, Markesbery WR (2000) Oxidative modification of creatine kinase BB in Alzheimer's disease brain. J Neurochem 74:25202527.
  • 3
    Aksenov MY, Atiksenova MV, Butterfield DA, Geddes JW, Markesbery WR (2001) Protein oxidation in the brain in Alzheimer's disease. Neuroscience 103:373383.
  • 4
    Aruoma OI, Kaur H, Halliwell B (1991) Oxygen free radicals and human diseases. J R Soc Health 111:172177.
  • 5
    Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762:10511067.
  • 6
    Barja G (2007) Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies. Rejuvenation Res 10:215224.
  • 7
    Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205214.
  • 8
    Bigl M, Brückner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer's disease. J Neural Transm 106:499511.
  • 9
    Bland AM, D'Eugenio LR, Dugan MA, Janech MG, Almeida JS, Zile MR, Arthur JM (2006) Comparison of variability associated with sample preparation in two-dimensional gel electrophoresis of cardiac tissue. J Biomol Tech 17:195199.
  • 10
    Blass JP (2002) Alzheimer's disease and Alzheimer's dementia: distinct but overlapping entities. Neurobiol Aging 23:10771084.
  • 11
    Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC et al (2005) Proteomic identification of proteins oxidized by Aβ(1–42) in synaptosomes: implications for Alzheimer's disease. Brain Res 1044:206215.
  • 12
    Boyd-Kimball D, Sultana R, Poon HF, Lynn BC, Casamenti F, Pepeu G et al (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid β-peptide (1–42) into rat brain: implications for Alzheimer's disease. Neuroscience 132:313324.
  • 13
    Boyd-Kimball D, Poon HF, Lynn BC, Cai J, Pierce WM Jr, Klein JB et al (2006) Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Aβ(1–42): implications for Alzheimer's disease. Neurobiol Aging 27:12391249.
  • 14
    Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945962.
  • 15
    Butterfield DA, Stadtman ER (1997) Protein oxidation processes in aging brain. In: Advances in Cell Aging and Gerontology, Vol. 2. PSTimiras, EEBittar (eds), pp. 161191. JAI Press, Greenwich.
  • 16
    Butterfield DA, Sultana R (2008) Redox proteomics: understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev Proteomics 5:157160.
  • 17
    Butterfield DA, Abdul HM, Newman S, Reed T (2006) Redox proteomics in some age-related neurodegenerative disorders or models thereof. NeuroRx 3:344357.
  • 18
    Butterfield DA, Gnjec A, Poon HF, Castegna A, Pierce WM, Klein JB, Martins RN (2006) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease: an initial assessment. J Alzheimers Dis 10:391397.
  • 19
    Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer's disease. Neurobiol Dis 22:223232.
  • 20
    Butterfield DA, Sultana R, Poon HF (2006) Redox proteomics: a new approach to investigate oxidative stress in Alzheimer's disease. In: Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. IDalle-Donne, AScaloni, DAButterfield (eds), pp. 563603. John Wiley & Sons: Hoboken, NJ.
  • 21
    Cabiscol E, Ros J (2006) Oxidative damage to proteins: structural modifications and consequences in cell function. In: Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. IDalle-Donne, AScaloni, DAButterfield (eds), pp. 399471. John Wiley & Sons: Hoboken, NJ.
  • 22
    Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562571.
  • 23
    Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R et al (2002) Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J Neurochem 82:15241532.
  • 24
    Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer's disease brain. J Neurochem 85:13941401.
  • 25
    Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson's disease. Biochem Biophys Acta 1780:13621367.
  • 26
    Choi J, Forster MJ, McDonald SR, Weintraub ST, Carroll CA, Gracy RW (2004) Proteomic identification of specific oxidized proteins in ApoE-knockout mice: relevance to Alzheimer's disease. Free Radic Biol Med 36:11551162.
  • 27
    Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin LS, Li L (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 279:1325613264.
  • 28
    Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem 280:1164811655.
  • 29
    Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE et al (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281:1081610824.
  • 30
    Chung KKK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L et al (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304:13281331.
  • 31
    Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299304.
  • 32
    Dalfó E, Ferrer I (2008) Early α-synuclein lipoxidation in neocortex in Lewy body diseases. Neurobiol Aging 29:408417.
  • 33
    Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64:816830.
  • 34
    Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G et al (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24:5599.
  • 35
    Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A (2006) Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 10:389406.
  • 36
    Dalle-Donne I, Rossi R, Ceciliani F, Giustarini D, Colombo R, Milzani A (2006) Proteins as sensitive biomarkers of human conditions associated with oxidative stress. In: Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. IDalle-Donne, AScaloni, DAButterfield (eds), pp. 487525. John Wiley & Sons: Hoboken, NJ.
  • 37
    Dalle-Donne I, Scaloni A, Butterfield DA (eds) (2006) Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. John Wiley & Sons: Hoboken, NJ.
  • 38
    Daneshvar B, Frandsen H, Autrup H, Dragsted LO (1997) γ-Glutamyl semialdehyde and 2-amino-adipic semialdehyde: biomarkers of oxidative damage to proteins. Biomarkers 2:117123.
  • 39
    Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med 44:17871794.
  • 40
    De Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H et al (2001) Prediction of cognitive declinein normal elderly subjects with 2-[18F]fluorodo-2-deoxy-D-glucosee/positron-emission tomography (FDG/PET). Proc Natl Acad Sci USA 98:1096610971.
  • 41
    Ding Q, Dimayuga E, Keler JN (2007) Oxidative damage, protein synthesis, and protein degradation in Alzheimer's disease. Curr Alzheimer Res 4:7379.
  • 42
    Ferrer I (2009) Early involvement of the cerebral cortex in Parkinson's disease: convergence of multiple metabolic defects. Progr Neurobiol 88:89103.
  • 43
    Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9:181194.
  • 44
    Gibson GE, Huang HM (2005) Oxidative stress in Alzheimer's disease. Neurobiol Aging 26:575578.
  • 45
    Gibson GE, Karuppagounder SS, Shi Q (2008) Oxidant-induced changes in mitochondria and calcium dynamics in the pathophysiology of Alzheimer's disease. Ann N Y Acad Sci 1147:221232.
  • 46
    Gibson GE, Ratan RR, Beal MF (2008) Mitochondria and oxidatiuve stress in neurodegenerative disorders. Preface. Ann NY Acad Sci 1147:xixii.
  • 47
    Gilca M, Stoian I, Atanasiu V, Virgolici B (2007) The oxidative hypothesis of senescence. J Postgrad Med 53:207213.
  • 48
    Gómez A, Ferrer I (2009) Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J Neurosci Res 87:10021013.
  • 49
    Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S22S.
  • 50
    Halliwell B, Gutteridge JMC (2007) Free Radicals in Biology and Medicine. Oxford University Press: New York.
  • 51
    Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in dementia. Br J Radiol 80(Spec. No. 2):S160S167.
  • 52
    Hirai K, Aliev G, Nunomura A, Fujioka H, Rusell RL, Atwood CS et al (2001) Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 21:30173023.
  • 53
    Ilieva EV, Ayala V, Jové M, Dalfó E, Cacabelos D, Povedano M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:31113123.
  • 54
    Ilieva EV, Naudí A, Kichev A, Ferrer I, Pamplona R, Portero-Otín M (2009) Loss of the Stress Transducers Nrf2 and Grp78/BiP in Pick's Disease. (In press).
  • 55
    Ischiropoulos H, Al-Medi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279282.
  • 56
    Keeney PM, Xie J, Capaldi RA, Bennett JP (2006) Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:52565264.
  • 57
    Korolainen MA, Auriola S, Nyman TA, Alafuzoff I, Pirttilä T (2005) Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain. Neurobiol Dis 20:858870.
  • 58
    Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttilä T (2006) Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain. Neurobiol Aging 27:4253.
  • 59
    LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG (2007) The effects of oxidative stress on parkin and other E3 ligases. J Neurochem 103:23542368.
  • 60
    Levine RL, Stadtman ER (2001) Oxidative modifications of proteins during aging. Exp Gerontol 36:14951502.
  • 61
    Lowell MA, Markesbery WB (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucl Acid Res 35:74977504.
  • 62
    Mancuso C, Scapagini G, Currò D, Giuffrida Stella AM, De Marco C, Butterfield DA, Calabrese V (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:11071123.
  • 63
    Markesbery WR, Lowell MA (2007) Damage to lipids, proteins, DNA and RNA in mild cognitive impairment. Arch Neurol 64:954956.
  • 64
    Martínez A, Carmona M, Portero-Otin M, Naudí A, Pamplona R, Ferrer I (2008) Type-dependent oxidative damage in frontotemporal lobar degeneration: cortical astrocytes are targets of oxidative damage. J Neuropathol Exp Neurol 67:11221136.
  • 65
    Martínez A, Dalfó E, Muntané G, Ferrer I (2008) Glycolitic enzymes are targets of oxidation in aged human frontal cortex and oxidative damage of these proteins is increased in progressive supranuclear palsy. J Neural Transm 115:5966.
  • 66
    Mikkelsen RB, Wardman P (2003) Biological, chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22:57345754.
  • 67
    Moreira PI, Smith MA, Zhu X, Nunomura A, Castellani RJ, Perry G (2005) Oxidative stress and neurodegeneration. Ann N Y Acad Sci 1043:545552.
  • 68
    Moreira PI, Santos MS, Oliveira CR (2007) Alzheimer's disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal 9:16211630.
  • 69
    Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. Eur J Nucl Med 32:486510.
  • 70
    Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M et al (2006) Hippocampal metabolism predicts cognitive decline from normal aging. Neurobiol Aging 29:676692.
  • 71
    Mosconi L, Sorbi S, De Leon MJ, Li Y, Nacmias B, Myoung PS et al (2006) Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med 47:17781786.
  • 72
    Mosconi L, Pupi A, De Leon MJ (2008) Brain glucose metabolism and oxidative stress in preclinical Alzheimer's disease. Ann N Y Acad Sci 1147:180195.
  • 73
    Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med 49:390398.
  • 74
    Muntané G, Dalfó E, Martínez A, Rey MJ, Avila J, Pérez M et al (2006) Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick's disease. J Neurochem 99:177185.
  • 75
    Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K (2007) Oxidative damage in nucleic acids and Parkinson's disease. J Neurosci Res 85:919934.
  • 76
    Navarro A, Boveris A, Bández MJ, Sanchez-Pinto MJ, Gómez C, Muntane G, Ferrer I (2009) Human brain cortex: mitochondrial oxidative damage and adaptative response in Parkinson disease and dementia with Lewy bodies. Free Radic Biol Med 46:15741580.
  • 77
    Newman SF, Sultana R, Perluigi M, Coccia R, Cai J, Pierce WM et al (2007) An increase in S-glutathionylated proteins in the Alzheimer's disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85:15061514.
  • 78
    Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK et al (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 60:759767.
  • 79
    Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631641.
  • 80
    Nunomura A, Moreira PI, Takeda A, Smith MA, Perry G (2007) Oxidative RNA damage and neurodegeneration. Curr Med Chem 14:29682975.
  • 81
    Onyango IG, Khan SM (2006) Oxidative stress, mitochondrial dysfunction, and stress signalling in Alzheimer's disease. Curr Alzheimer Res 3:339349.
  • 82
    Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777:12491262.
  • 83
    Pamplona R, Barja G (2007) Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res Rev 6:189210.
  • 84
    Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otín M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 280:2152221530.
  • 85
    Pamplona R, Ilieva E, Ayala V, Bellmunt MJ, Cacabelos D, Dalfo E et al (2008) Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes. Ann N Y Acad Sci 1126:315319.
  • 86
    Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG et al (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44:819824.
  • 87
    Perez-Gracia E, Torrejon-Escribano B, Ferrer I (2008) Dystrophic neurites of senile plaques in Alzheimer's disease are deficient in cytochrome C oxidase. Acta Neuropathol 116:261268.
  • 88
    Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V et al (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38:960968.
  • 89
    Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V et al (2005) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics 4:18491861.
  • 90
    Petersen RB, Nunomura A, Lee HG, Casadesus G, Perry G, Smith MA, Zhu X (2007) Signal transduction cascades associated with oxidative stress in Alzheimer's disease. J Alzheimers Dis 11:143152.
  • 91
    Petrak J, Ivanek R, Toman O, Cmejla R, Cmejlova J, Vyoral D et al (2008) Déjà vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics 8:17441749.
  • 92
    Pierce A, Mirzaei H, Muller F, De Waal E, Taylor AB, Leonard S et al (2008) GAPDH is conformationally and functionally altered in association with oxidative stress in mouse models of amyotrophic lateral sclerosis. J Mol Biol 382:11951210.
  • 93
    Piert M, Koeppe RA, Giordani B, Berent S, Kuhl DE (1996) Diminished glucose transport and phosphorylation in Alzheimer's disease determined by dynamic FDG-PET. J Nucl Med 37:201208.
  • 94
    Pietrini P, Furey ML, Guazzelli M, Alexander GE (2001) Functional brain studies of the neurometabolic bases of cognitive and behavioral changes in Alzheimer's disease. In: Functional Neurobiology of Aging. PRHof, CVMobbs (eds), pp. 227241. Academic Press: New York.
  • 95
    Poon HF, Frasier M, Shreve N, Calabrese V, Wolozin B, Butterfield DA (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice—a model of familial Parkinson's disease. Neurobiol Dis 18:492498.
  • 96
    Poon HF, Hensley K, Thongboonkerd V, Merchant ML, Lynn BC, Pierce WM et al (2005) Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 39:453462.
  • 97
    Portero-Otin M, Pamplona R (2006) Is endogenous oxidative protein damage envolved in the aging process? In: Protein Oxidation and Disease. JPietzsch (ed.), pp. 91142. Research Signpost, Kerala, India.
  • 98
    Practico D (2008) Oxidative stress hypothesis in Alzheimer's disease: a reappraisal. Trends Pharmacol Sci 29:609615.
  • 99
    Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:L699L722.
  • 100
    Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM et al (2008) Proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer's disease. Neurobiol Dis 30:107120.
  • 101
    Reed TT, Pierce WM Jr, Turner DM, Markesbery WR, Butterfield DA (2008) Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobule. J Cell Mol Med DOI: 10.1111/j.1582-4934.2008.00478.
  • 102
    Requena J, Chao CC, Stadtman ER (2001) Glutamic acid and aminodipidic semialdehydes are thye main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci USA 98:624632.
  • 103
    Santpere G, Ferrer I (2008) Delineation of progressive supranuclear palsy-like pathology. Astrocytes in striatum are primary targets of tau phosphorylation and GFAP oxidation. Brain Pathol 19:177187.
  • 104
    Santpere G, Puig B, Ferrer I (2007) Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer's disease and cerebral amyloid angiopathy. Neuroscience 146:16401651.
  • 105
    Shin SJ, Lee SE, Boo JH, Kim M, Yoon YD, Kim SI, Mook-Jung I (2004) Profiling proteins related to amyloid deposited brain of Tg2576 mice. Proteomics 4:33593368.
  • 106
    Smith MA, Rudnicka-Nawrot M, Richey P, Praprotnik D, Mulvihill P, Miller CA et al (1995) Carbonyl-related post-translational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer's disease. J Neurochem 64:26602666.
  • 107
    Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45:667678.
  • 108
    Stadtman ER (1998) Free radical-mediated oxidation of proteins. In: Free Radicals, Oxidative Stress, and Antioxidants: Pathological and Physiological Significance. NATO ASI Series, Series A: Life Sciences, Vol. 296. TOzben (ed.), pp. 51143. Plenum Press: New York.
  • 109
    Stadtman ER (2002) Importance of individuality in oxidative stress and aging. Free Radic Biol Med 33:597604.
  • 110
    Stadtman ER, Berlett BS (1997) Free radical-mediated modification of proteins. In: Free Radical Toxicity. KBWallace (ed.), pp. 7187. Taylor and Francis: Washington, DC.
  • 111
    Stadtman ER, Levine RL (2006) Chemical modification of proteins by reactive oxygen species. In: Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. IDalla-Donne, AScaloni, DAButterfield (eds), pp. 323. John Wiley & Sons: Hoboken, NJ.
  • 112
    Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:3752.
  • 113
    Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G et al (2008) Oxidative stress signalling in Alzheimer's disease. Curr Alzheimer Res 5:525532.
  • 114
    Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB et al (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27:918925.
  • 115
    Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB et al (2006) Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:15641576.
  • 116
    Sultana R, Newman SF, Abdul HM, Cai J, Pierce WM, Klein JB et al (2006) Protective effect of D609 against amyloid-beta1-42-induced oxidative modification of neuronal proteins: redox proteomics study. J Neurosci Res 84:409417.
  • 117
    Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB et al (2006) Identification of nitrated proteins in Alzheimer's disease brain using a redox proteomics approach. Neurobiol Dis 22:7687.
  • 118
    Sultana R, Perluigi M, Butterfield DA (2009) Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118:131150.
  • 119
    Terni B, Boada J, Portero-Otín M, Pamplona R, Ferrer I (2009) Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer's disease pathology. Brain Pathol DOI: 10.1111/j.1750-3639.2009.00266.x.
  • 120
    Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005L1028.
  • 121
    Thomas DD, Ridnour L, Donzelli S, Espey MG, Mancardi D, Isenberg JS et al (2006) The chemistry of protein modifications elicited by nitric oxide and related nitrogen oxides. In: Redox Proteomics: From Protein Modifications to Cellular Dysfunction and Diseases. IDalle-Done, AScaloni, DAButterfield (eds), pp. 2558. John Wiley & Sons: Hoboken, NJ.
  • 122
    Thorpe SR, Baynes JW (2003) Maillard reaction products in tissue proteins: new products and new perspectives. Amino Acids 25:275281.
  • 123
    Wataya T, Nunomura A, Smith MA, Siedlak SL, Harris PLR, Shimohama S et al (2002) High molecular weight neurofilament proteins are physiological substrates of aduction by the lipid peroxidation product hydroxynonenal. J Biol Chem 277:46444648.
  • 124
    Wolff SP, Jiang ZY, Hunt JV (1991) Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med 10:339352.
  • 125
    Wong-Riley M, Antuono P, Ho KV, Egan R, Hevner R, Liebl WW et al (1997) Cytochrome oxiudase in Alzheimer's disease: biochemical, histochemical, and immunohistochemical analysis of the visual and other systems. Vision Res 37:35933608.
  • 126
    Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B et al (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:1081010814.
  • 127
    Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93104.
  • 128
    Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signalling in Alzheimer's disease. Brain Res 1000:3239.
  • 129
    Zhu X, Lee HG, Casadesus G, Avila J, Drew K, Perry G, Smith MA (2005) Oxidative imbalance in Alzheimer's disease. Mol Neurobiol 31:205217.
  • 130
    Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes of oxidative stress in Alzheimer's disease. Cell Mol Life Sci 64:22022210.