SEARCH

SEARCH BY CITATION

Keywords:

  • acetic acid;
  • mannitol;
  • sauerkraut;
  • sensory analysis;
  • sodium chloride;
  • texture

ABSTRACT:  Sauerkraut fermentations rely upon selection of naturally occurring lactic acid bacteria by addition of 2.0% to 2.25% granulated sodium chloride (NaCl) to shredded cabbage. Excess brine generated is a waste product with high levels of organic material (BOD) and nonbiodegradable NaCl. The objective was to determine whether addition of Leuconostoc mesenteroides starter culture to reduced-salt cabbage fermentations would yield sauerkraut with reproducible and acceptable chemical composition and sensory qualities. Shredded cabbage was salted with 0.5%, 1.0%, or 2.0% NaCl (wt/wt) at 2 starter culture levels, none or L. mesenteroides strain LA 81, ATCC 8293 (106 CFU/g). Fermentation products were quantified by high-performance liquid chromatography, and pH was measured during the initial stages of fermentation and after 10 mo storage at 18 °C. A trained descriptive sensory panel used category scales to rate the flavor and texture of selected sauerkrauts. A modified Kramer shear test was used to measure firmness. Cabbage fermented with L. mesenteroides consistently resulted in sauerkraut with firm texture and reduced off-flavors across all salt levels (P < 0.05). Conversely, sauerkraut quality was highly variable, with softening and off-flavors occurring as salt concentrations were decreased in natural fermentations (P < 0.05). Fermentations were rapid, with a more uniform decline in pH when starter culture was added. L. mesenteroides addition to cabbage fermentations ensured that texture and flavor quality were retained, while allowing 50% NaCl reduction. Application of this technology to commercial sauerkraut production could improve the uniformity of fermentations and substantially reduce generation of nonbiodegradable chloride waste.