SEARCH

SEARCH BY CITATION

Keywords:

  • foodborne;
  • iceberg;
  • internalization;
  • ionizing radiation;
  • nonthermal

ABSTRACT:  Pathogenic bacteria internalized in leaf tissues are not effectively removed by surface treatments. Irradiation has been shown to inactivate leaf-internalized bacteria, but many aspects of targeting these protected pathogens remain unknown. Bacterial cells of a cocktail mixture of 3 isolates of Escherichia coli O157:H7 were drawn into the leaves of iceberg, Boston, green leaf, and red leaf lettuce using vacuum perfusion. The inoculated leaves were treated with a 3-min wash with sodium hypochlorite solution (0, 300, or 600 ppm) or various doses of ionizing radiation (0.25 to 1.5 kGy). Leaves were stomached to recover the internalized cells and survivors enumerated. Washes with 0 ppm (water), 300 ppm, and 600 ppm chlorine solutions each gave reductions of less than 1 log. These reductions were statistically significant only in the case of green leaf lettuce. In contrast, irradiation effectively reduced E. coli O157:H7 on all varieties examined, with all doses tested being significantly reduced from the untreated control. The specific variety influenced the efficacy of irradiation. The greatest reduction obtained was 5 logs on iceberg lettuce treated with 1.5 kGy. The D10 values (the dose necessary to achieve a 1 log reduction) were significantly (P < 0.05) different among the varieties of lettuce tested, and ranged from 0.30 kGy (iceberg) to 0.45 kGy (Boston). These values were observed to be notably higher than previous irradiation D10 values for E. coli O157:H7 surface inoculated onto these 4 lettuce varieties. This study has shown that irradiation is able to effectively reduce viable E. coli O157:H7 cells internalized in lettuce, and that the variety of lettuce influences the specific response.