• agglomeration;
  • flavor;
  • storage;
  • whey protein;
  • WPC;
  • WPI

ABSTRACT:  The impact of agglomeration on flavor and flavor stability of whey protein concentrates 80% (WPC80) and whey protein isolates (WPI) has not been widely addressed. This study examined the impact of agglomeration on the flavor and flavor stability of commercial WPC80 and WPI across 18 mo of storage. Duplicate agglomerated and nonagglomerated WPC80 and WPI were collected from 4 facilities and stored at 21 °C, 50% relative humidity. Volatile analysis using solid phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis were conducted every 2 mo. Solubility index, bulk volume, dispersibility, moisture, and color (L, a, b) were tested every 3 or 6 mo. Consumer acceptance testing with protein beverages was conducted with fresh and stored whey proteins. Higher intensities and more rapid development of lipid oxidation flavors (cardboard, raisin/brothy, cucumber, and fatty) were noted in agglomerated powders compared to nonagglomerated powders (P < 0.05). Volatile analysis results confirmed sensory results, which indicated increased formation of aldehydes and ketones in agglomerated products compared to nonagglomerated powders (P < 0.05). Consumer acceptance scores for protein beverages were lower for beverages made with agglomerated WPC80 stored for 12 mo and agglomerated or nonagglomerated WPI stored for 18 mo compared to fresh products while trained panelists detected differences among beverages and rehydrated proteins earlier. Agglomeration with or without lecithin decreased the storage stability of whey proteins. These results indicate that the optimum shelf life at 21 °C for nonagglomerated whey proteins is 12 to 15 mo and 8 to 12 mo for agglomerated whey proteins.