• cocoa butter: cocoa butter–like fat blends;
  • differential scanning calorimetry;
  • enzymatic acidolysis;
  • kinetics of oxidation;
  • olive pomace oil

ABSTRACT:  A cocoa butter (CB)–like fat was produced in a packed bed enzyme reactor using sn-1,3 specific lipase, and its blends with CB were prepared at different ratios (CB: CB-like fat; 100: 0, 90: 10, 80: 20, 70: 30, 60: 40, 50: 50, 0: 100). The oxidation kinetics of CB: CB-like fat blends was studied by differential scanning calorimeter (DSC). Samples were heated in DSC at different temperatures (130, 140, 150, 160 °C) under 100 mL/min oxygen. From DSC exotherms, oxidation induction times (OIT) were determined and used for the assessment of the oxidative stabilities of the blends. Oxidation kinetics parameters (activation energy, Ea; preexponential factor, Z; and oxidation rate constant, k) were calculated. In general, it has been observed that above 110 °C increasing the ratio of CB-like fat in the blend increased the k value with increasing temperature. It has been observed that for all blends the increase in k value with temperature was significant (P < 0.05). Increasing CB-like fat ratio in the blend decreased the content of major TAGs (1,3-dipalmitoyl-2-oleoyl-glycerol [POP]; 1[3]-palmitoyl-3[1]stearoyl-2-oleoyl-glycerol [POS]; 1,3-distearoyl-2-oleoyl-glycerol [SOS]), and decreased the oxidative stability of the blends.