• color;
  • macerating enzymes;
  • phenolic compounds;
  • pulsed electric fields (PEF);
  • wine

ABSTRACT:  The effect of the addition of 2 enzymatic preparations and the application of a pulsed electric fields treatment (PEF) on the phenolic content and color of Cabernet Sauvignon wine has been compared. The evolution of color intensity (CI), anthocyanic content (AC), and total polyphenol index (TPI) from crushing to 3 mo of aging in bottle was studied. The results demonstrated that both treatments promoted greater extraction of phenolic compounds, compared to the untreated wine. However, PEF technology was more effective. After 3 mo of storage, CI, AC, and TPI were 28%, 26%, and 11%, respectively, higher in PEF-wine than in control wine. By contrast, while both enzymatic preparations increased the CI of the wine around 5%, only one of them increased the AC and TPI by 11% and 3%, respectively, in comparison with the control. After 3 mo of aging in bottle, the phenolic composition was also analyzed by high-performance liquid chromatography (HPLC). The content of nonanthocyanic families was higher in PEF-wine than in the rest of the wines. In wines treated by enzymes, only an increase in phenolic acids and flavonols with respect to the control was detected.

Practical Application: Pulsed electric fields is a novel food processing technology that poses a very promising future to the enological field, due to its capacity to improve the mass transfer phenomenon. The continuous development of this technology allows nowadays the application of treatments at the semi-industrial scale. In this article, it has been demonstrated that the application of a PEF treatment to the grape pomace before maceration/fermentation is more effective, in terms of color intensity and phenolic content, than the addition of macerating enzymes.