SEARCH

SEARCH BY CITATION

Keywords:

  • LAMP;
  • pork;
  • Salmonella

ABSTRACT:  Loop-mediated isothermal amplification (LAMP) is a novel molecular detection method that is more rapid and simpler than PCR. Products can be detected by turbidity using one temperature without the need for expensive PCR equipment. Our objective was to sensitively detect Salmonella Typhimurium from pork products within 1 d using the LAMP assay. Pork chop and pork sausage samples (25 g) were inoculated with high (108 to 106 CFU) and low (105 to 100 CFU) inocula of S. Typhimurium. Serial dilutions in phosphate buffered saline were plated on XLT4 agar either immediately or after selective preenrichment in tetrathionate broth (225 mL) for 10-h at 37 °C. Nucleic acid was extracted using the TRIzol® method from 1-mL samples. The LAMP assay using 6 specific invA gene primers and Bst DNA polymerase reaction mix was carried out at 62 °C for 90 min in a waterbath. Turbid products were detected visually and by agarose gel electrophoresis. Improved Salmonella detection at 102 CFU/25 g for both pork chop and sausage was obtained after 10-h enrichment and 106 CFU/25 g without enrichment for both products. This assay can detect Salmonella from pork within 1 d, significantly faster than traditional methods that take >5 d. This method shows tremendous potential for routine diagnostics and monitoring of Salmonella by the pork industry.

Practical Application: The novel loop-mediated isothermal amplification (LAMP) assay is a rapid, specific, and sensitive method that has potential application for routine diagnostics of Salmonella from pork products. The isothermal method does not require expensive equipment such as a PCR thermocylcer but only a simple waterbath for amplification within 90 min. Detection is even simpler by visual eye or turbidimeters that are less expensive than fluorescent spectrophotometers or real-time PCR machines. All these advantages make it a practical approach for routine use by processing industries to rapidly detect Salmonella in their environment and to implement appropriate control strategies. To improve detection sensitivities, preenrichment followed by selective enrichment may be necessary. Even so, the entire assay can be completed at the most within two 8-h working shifts.