• associative learning;
  • biosensors;
  • boar taint;
  • Microplitis croceipes

Abstract:  The off-flavor boar taint associated with the substances skatole, androstenone, and possibly indole represents a significant problem in the pig husbandry industry. Boar taint may occur in meat from uncastrated sexually mature male pigs; consumers commonly show a strong aversion to tainted meat. Consequently, there is a need for rapid methods to sort out and remove tainted carcasses at the slaughterline. We tested the ability of wasps, Microplitis croceipes to perceive and learn the 3 boar taint compounds both individually and in combination using classical conditioning paradigms. We also established the effectiveness and reliability of boar taint odor detection when wasps were used as biosensors in a contained system called the “wasp hound” using a cohort of trained wasps. We found that the wasps are able to successfully learn indole, skatole and to also detect them when presented a 1: 1: 1 mixture of all 3 compounds. This was shown for both a single hand-manipulated wasp bioassay and when using the “wasp hound” detector device. In contrast, the wasps showed a weak conditioned response to androstenone at the concentration tested. The estimated gas phase concentrations that the wasps perceived during training were in the range of 10 ± 0.4 pg/s for skatole and indole, and 2 ± 0.5 pg/s for androstenone. We conclude that use of these wasps as biosensors presents a promising method for boar taint detection and discuss future training paradigms that may improve their responses to compounds such as androstenone.

Practical Application:  The development of a perceptive, inexpensive, and reliable means of detecting boar taint before the product is presented to sensitive consumers.