SEARCH

SEARCH BY CITATION

Keywords:

  • bread;
  • β-glucan;
  • solubility;
  • storage;
  • viscosity

Abstract:  The viscosity and solubility of β-glucan in muffins have been shown to be reduced by certain storage conditions, though the effect of storage on bread fortified with barley β-glucan concentrate has not been investigated. Therefore, this study investigated the effect of storage temperature and time (23 °C for 1, 4, and 7 d, 4 °C for 4, 7, and 14 d, and −20 °C for 1, 2, 4, and 8 wk) on the solubility and viscosity of β-glucan upon incorporation into bread at levels corresponding to 0 or 1.5 g β-glucan/serving, with or without vital gluten addition. The firmness and moisture content of bread following each storage treatment were also evaluated. The highest moisture and lowest firmness values were found in fresh bread, though these parameters were still maintained at appreciable levels upon room temperature storage of the 1.5 g β-glucan/serving bread with added gluten and at either room temperature or frozen storage for the 1.5 g β-glucan/serving bread for 4 d. If it is desirable to store bread for 7 d or more, frozen storage should be utilized in order to best maintain bread moisture and firmness levels. It is recommended that β-glucan-fortified bread be consumed fresh for greatest β-glucan solubility and viscosity, though β-glucan solubility of approximately 40% is still achievable upon frozen storage of the bread for up to 2 wk. It is still unclear, however, as to what extent of reductions in the solubility and viscosity of β-glucan would lower its physiological effectiveness.

Practical Application:  Previous research has demonstrated that solubility and thus viscosity of β-glucan, which is an important property associated with its health benefits can be impacted by different storage conditions applied to some bakery products, like muffins. This study demonstrates the extent of changes in the solubility and viscosity of β-glucan incorporated into bread. Therefore, storage time and temperature should be optimized to minimize changes in β-glucan for maintaining its efficacy for its health benefits.