Effects of Protein Separation Conditions on the Functional and Thermal Properties of Canola Protein Isolates

Authors

  • Wajira A. R. Manamperi,

    1. Authors Manamperi, Wiesenborn, and Pryor are with Dept. of Agricultural and Biosystems Engineering, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Author Chang is with Dept. of Cereal and Food Sciences, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Direct inquiries to author Pryor (E-mail: Scott.Pryor@ndsu.edu).
    Search for more papers by this author
  • Dennis P. Wiesenborn,

    1. Authors Manamperi, Wiesenborn, and Pryor are with Dept. of Agricultural and Biosystems Engineering, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Author Chang is with Dept. of Cereal and Food Sciences, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Direct inquiries to author Pryor (E-mail: Scott.Pryor@ndsu.edu).
    Search for more papers by this author
  • Sam K.C. Chang,

    1. Authors Manamperi, Wiesenborn, and Pryor are with Dept. of Agricultural and Biosystems Engineering, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Author Chang is with Dept. of Cereal and Food Sciences, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Direct inquiries to author Pryor (E-mail: Scott.Pryor@ndsu.edu).
    Search for more papers by this author
  • Scott W. Pryor

    1. Authors Manamperi, Wiesenborn, and Pryor are with Dept. of Agricultural and Biosystems Engineering, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Author Chang is with Dept. of Cereal and Food Sciences, North Dakota State Univ., Dept. 7620, P.O. Box 6050, Fargo, ND 58108-6050, U.S.A. Direct inquiries to author Pryor (E-mail: Scott.Pryor@ndsu.edu).
    Search for more papers by this author

Abstract

Abstract:  Canola meal protein isolates were prepared from defatted canola meal flour using alkaline solubilization and acid precipitation. A central composite design was used to model 2nd-order response surfaces for the protein yield and the functional properties of protein isolates. The solubilization pH and precipitation pH were used as design factors. The models showed that the protein yield and functional properties of isolates, such as water absorption and fat absorption, were sensitive to both solubilization pH and precipitation pH, whereas the emulsification was sensitive to only solubilization pH. Gel electrophoresis analysis of protein fractions gave evidence to the compositional changes between proteins isolated under different conditions. Differences in glass transition temperatures suggest that proteins tend to be more denatured when solubilized at highly alkaline conditions. These conformational and compositional changes due to different protein separation conditions have contributed to the changes in functional properties of protein isolates.

Practical Application:  Protein isolation conditions may be determined primarily through optimization of total protein yield. Improvements in protein functional properties may be achieved with a relatively small sacrifice in yield by altering isolation conditions.

Ancillary