Get access

Development and Application of Reverse Transcription Loop-Mediated Isothermal Amplification for Detecting Live Shewanella putrefaciens in Preserved Fish Sample

Authors


Abstract

Abstract:  Given that live Shewanella putrefaciens is one of the major causes of spoilage for aquatic products even in chill storage, the rapid and accurate detection process is the first priority. In the present study, a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) detecting assay was developed by targeting internal transcribed spacer (ITS) sequence between 16S and 23S rRNA. At the same time, a new procaryotic mRNA isolation strategy was also established by introducing a polyA tail to RNA during cDNA synthesis step. Under the optimal reaction time (60 min) and temperature (64.1 °C), S. putrefaciens could be specially identified from a variety of other tested bacteria by RT-LAMP. The sensitivity analysis showed that RT-LAMP could be identified as lower as 5.4 copies per reaction, which is over 200-fold higher than that of standard PCR (1.08 × 103 copies per reaction). The method could be effectively identified S. putrefaciens in artificially contaminated or spoilaged fish samples with dose-dependent manners. To our knowledge, this is the first report using RT-LAMP assay to detect live S. putrefaciens in fish.

Practical Application:  The study provided a rapid and accurate detection method for live bacteria in aquatic food and established a new procaryotic mRNA isolation strategy at the same time, which will be useful for food preservation.

Ancillary