REPAIR OF NEAR (365 nm)- AND FAR (254 nm)-UV DAMAGE TO BACTERIOPHAGE OF ESCHERICHIA COLI

Authors


Abstract

Abstract: Intact bacteriophage have been irradiated at 365 nm or at 254 nm and then analysed for DNA photoproducts or injected into their bacterial host to test susceptibility of the damage to both phage and host-cell mediated repair systems. Both thymine dimers and single-strand breaks are induced in the phage DNA by 365 nm radiation. The dimers appear to be the major lethal lesion (approximately 2 dimers per lethal event) in both repair deficient bacteriophage T4 and bacteriophage λ. after irradiation with either 254 nm or 365 nm radiation. Damage induced in T4 by either wavelength is equally susceptible to x-gene reactivation (repair sector approximately 0.5). v-gene reactivation acts on a larger fraction of the near-UV damage (repair sector of 0.82 at 365 nm as against 0.66 at 254 nm). The host-cell mediated photoreactivation system is only slightly less effective for near-UV damage but host-cell reactivation (as measured by comparing survival of phage λ. on a uvr+ and a uvr- host) is effective against a far smaller sector of near-UV damage (0.35) than far-UV damage (0.85). Weigle-reactivation (far-UV induced) of near-UV damage to phage λ is not observed. The results suggest that unless the near-UV damaged phage DNA is repaired immediately after injection. the lesions rapidly lose their susceptibility to repair with a consequent loss of activity of the phage particles.

Ancillary