• 1
    Inouye, S.-I. T. and H. Kawamura (1979) Persistence of cir-cadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76, 59625966.
  • 2
    de Marian, J. J. D. (1729) Observation botanique. Histoir de ľAcademie Royale des Science, pp. 3536.
  • 3
    De Candolle, A. P. (1832) Physiology Vegetale. Bechet Jeune, Paris .
  • 4
    Darwin, C. (1880) On the Power of Movement in Plants. John Murray, London .
  • 5
    Bunning, E. (1973) The Physiological Clock. Springer, Berlin , Heidelberg , New York .
  • 6
    Rusak, B. (1981) Vertebrate behavioral rhythms. In Handbook of Behavioral Neurobiology (Edited by J.Aschoff), pp. 183213. Plenum Press, New York .
  • 7
    Dunlap, J. C. (1993) Genetic analysis of circadian clocks. Annu. Rev. Physiol. 55, 683728.
  • 8
    Konopka, R. and S. Benzer (1971) Clock mutants of Drosoph-ila melanogaster. Proc. Natl. Acad. Sci. USA 68, 21122116.
  • 9
    Stadler, D. R. (1959) Genetic control of a cyclic growth pattern in Neurospora. Nature 184, 170171.
  • 10
    Feldman, J. F. and N. M. Waser (1971) New mutations affecting circadian rhythmicity in Neurospora. In Biochronometry (Edited by M.Menaker), pp. 652656. National Academy of Sciences, Washington , DC .
  • 11
    Bruce, V. G. (1976) Mutants of the biological clock in Chlam-ydomonas reinhardi. Genetics 70, 537548.
  • 12
    Kondo, T., N. F. Tsinoremas, S. S. Golden, C. H. Johnson, S. Kutsuna and M. Ishiura (1994) Circadian clock mutants of cy-anobacteria. Science 266, 12331236.
  • 13
    Ralph, M. R. and M. Menaker (1988) A mutation of the circadian system in golden hamsters. Science 241, 12251227.
  • 14
    Vitaterna, M. H., D. P. King, A.-M. Chang, J. M. Kornhauser, P. L. Lowrey, J. D. McDonald, W. F. Dove, L. H. Pinto, F. W. Turek and J. S. Takahashi (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719725.
  • 15
    Michel, S., M. E. Geusz, J. J. Zaritsky and G. D. Block (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259, 239241.
  • 16
    Pickard, G. and W. Tang (1993) Individual pineal cells exhibit a circadian rhythm in melatonin secretion. Brain Res. 627, 141146.
  • 17
    Pickard, G. and W. Tang (1994) Pineal photoreceptors rhythmically secrete melatonin. Neurosci. Lett. 171, 109112.
  • 18
    Welsh, D. K., D. E. Logothetis, M. Meister and S. M. Reppert (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697706.
  • 19
    Roenneberg, T. and M. Mittag (1996) The circadian program of algae. Semin. Cell Dev. Biol. 7, 753763.
  • 20
    Pohl, R. (1948) Tagesrhythmus in phototaktischem Verhalten der Euglena gracilis. Z. Naturforsch. 3, 367374.
  • 21
    Bruce, V. and C. S. Pittendrigh (1958) Resetting the Euglena clock with a single light stimulus. Am. Nat. 92, 294306.
  • 22
    Bruce, V. G. (1970) The biological clock in Chlamydomonas reinhardi. J. Protozoal. 17, 328333.
  • 23
    Sweeney, B. M. and F. T. Haxo (1961) Persistence of a pho-tosynthetic rhythm in enucleated Acetabularia. Science 134, 13611363.
  • 24
    Hastings, J. W. and B. M. Sweeney (1958) A persistent diurnal rhythm of luminescence in Gonyaulax polyedra. Biol. Bull. 115, 440158.
  • 25
    Colepicolo, P., T. Roenneberg, D. Morse, W. R. Taylor and J. W. Hastings (1993) Circadian regulation of bioluminescence in the dinoflagellate Pyrocystis lunula. J. Phycol. 29, 173179.
  • 26
    Wille, J. J., Jr. and C. F. Ehret (1968) Light synchronization of an endogenous circadian rhythm of cell division in Tetra-hymena. J. Protozoal. 15, 785788.
  • 27
    Miwa, I., H. Nagatoshi and T. Horie (1987) Circadian rhyth-micity within single cells of Paramecium bursaria. J. Biol. Rhythms 2, 5764.
  • 28
    Edmunds, L. N., Jr (1988) Cellular and Molecular Bases of Biological Clocks: Models and Mechanisms of Circadian Time Keeping. Springer, New York , Heidelberg .
  • 29
    Pittendrigh, C. S. (1960) Circadian rhythms and the circadian organization of living systems. Cold Spring Harbor Symp. Quant. Biol. 25, 159184.
  • 30
    Gwinner, E. (1966) Entrainment of a circadian rhythm in birds by species-specific song cycles (Aves, Fringillidae; Carduelis spinus, Serinus serinus). Experientia 22, 765.
  • 31
    Wever, R. (1979) The Circadian System of Man. Springer, Berlin , Heidelberg , New York .
  • 32
    Sulzman, F. M., C. A. Fuller and M. C. Moore-Ede (1977) Feeding time synchronizes primate circadian rhythms. Physiol. Behav. 18, 775779.
  • 33
    Hau, M. and E. Gwinner (1992) Circadian entrainment by feeding cycles in house sparrows, Passer domesticus. J. Comp. Physiol. A 170, 403409.
  • 34
    Roenneberg, T. (1992) Spatial and temporal environment. The chrono-ecology of biolocial rhythms. Universitas 34, 202210.
  • 35
    Terman, M., C. Reme and A. Wirz-Justice (1991) The visual input stage of the mammalian circadian pacemaking system. II. The effect of light and drugs on retinal functions J. Biol. Rhythms 6, 3118.
  • 36
    Kenagy, G. J. (1976) The periodicity of daily activity and its seasonal changes in free-ranging and captive kangaroo rats. Oecologia 24, 105140.
  • 37
    Winfree, A. T. (1970) Integrated view of resetting a circadian clock. J. Theor. Biol. 28, 327374.
  • 38
    Pittendrigh, C. S. (1981) Circadian systems: entrainment. In Biological Rhythms (Edited by J.Aschoff), pp. 95124. Plenum, New York .
  • 39
    Aschoff, J. (1979) Circadian rhythms: influences of internal and external factors on the period measured under constant conditions. Z. Tierpsychol. 49, 225249.
  • 40
    Antoch, M. P., E.-J. Song, A.-M. Chang, M. Hotz Vitaterna, Y. Zhao, L. D. Wisbacher, A. M. Sangoram, D. P. King, L. H. Pinto and J. S. Takahashi (1997) Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell 89, 655667.
  • 41
    King, D. P., Y. Zhao, A. M. Sangoram, L. D. Wilsbacher, M. Tanaka, M. P. Antoch, T. D. L. Steeves, M. Hotz Vitaterna, J. M. Kornhauser, P. L. Lowrey, F. W. Turek and J. S. Takahashi (1997) Positional cloning of the mouse circadian clock gene. Cell 89, 641653.
  • 42
    Nelson, D. E. and J. S. Takahashi (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J. Physiol. 439, 115145.
  • 43
    Aschoff, J. (1994) On the aging of circadian systems. In Evolution of Circadian Clocks (Edited by T.Hiroshige and K.Honma), pp. 2314. Hokkaido Univ. Press, Sapporo .
  • 44
    DeCoursey, P. J. (1986) Light-sampling behavior photoentrain-ment of a rodent circadian rhythm. J. Comp. Physiol A 159, 161169.
  • 45
    Mrosovsky, N. (1994) In praise of masking: behavioral responses of retinally degenerate mice to dim light. Chronobiol. Int. 11, 343348.
  • 46
    Millar, A. J., M. Straumer, J. Chorry, N.-H. Chua and S. A. Kay (1995) The regulation of circadian period by phototrans-duction pathways in Arabidopsis. Science 267, 11631166.
  • 47
    Helfrich-Forster, C. (1996) Drosophila rhythms: from brain to behavior. Semin. Cell Dev. Biol. 7, 791802.
  • 48
    Block, G. D., S. B. Khalsa, D. G. McMahon and M. Guesz (1993) Biological clocks in the retina: cellular mechanisms of biological timekeeping. Int. Rev. Cytol. 146, 83144.
  • 49
    Foster, R. G., M. S. Grace, I. Provencio, W. J. Degrip and J. M. Garcia-Fernandez (1994) Identification of vertebrate deep brain photoreceptors. Neurosci. Biobehav. Rev. 18, 541546.
  • 50
    Minutini, L., A. Innocenti, C. Bertolucci and A. Foa (1994) Electrolytic lesions to the optic chiasm affect circadian locomotor rhythms in lizards. Neuroreport 5, 525527.
  • 51
    Young, M. W. (1992) Molecular Genetics of Biological Rhythms. Marcel Dekker, New York .
  • 52
    Takahashi, J. S. and J. M. Kronhauser (1993) Molecular approaches to understanding circadian oscillators. Annu. Rev. Physiol. 55, 729753.
  • 53
    Hall, J. C. (1995) Tripping along the trail to the molecular mechnisms of biological clocks. Trends Neurosci. 18, 230240.
  • 54
    Kay, S. A. and A. J. Millar (1995) New models in vogue for circadian clocks. Cell 83, 361364.
  • 55
    Rosbash, M. (1995) Molecular control of circadian rhythms. Curr. Opin. Gen. Dev. 5, 662668.
  • 56
    Takahashi, J. S., L. H. Pinto and M. H. Vitaterna (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264, 17241733.
  • 57
    Johnson, C. H., S. S. Golden, M. Ishiura and T. Kondo (1996) Circadian clocks in prokaryotes. Mol. Microbiol. 21, 511.
  • 58
    Millar, A. J., I. A. Carre, C. A. Strayer, N.-H. Chua and S. A. Kay (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 11611163.
  • 59
    Crosthwaite, S. K., J. J. Loros and J. C. Dunlap (1995) Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81, 10031012.
  • 60
    Lee, C., V. Parikh, T. Itsukaichi, K. Bea and I. Edery (1996) Resetting the Drosophila clock by photic regulation of PER and PER-TIM complex. Science 271, 17401744.
  • 61
    Sehgal, A. (1995) Genetic dissection of the circadian clock: a timeless story. Neuroscience 7, 2735.
  • 62
    Sehgal, A., A. Rothenfluh-Hilfiker, M. Hunter-Ensor, Y. Cheng, M. P. Myers and M. W. Young (1995) Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 270, 808810.
  • 63
    Hunter-Ensor, M., A. Ousley and A. Sehgal (1996) Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677685.
  • 64
    Myers, M., K. Wagersmith, A. Rothenfluhhilfiker and M. Young (1996) Light induced degeneration of timeless and en-trainment of the Drosophila circadian clock. Science 271, 17361740.
  • 65
    Zeng, H., Z. Qian, M. P. Myers and M. Rosbash (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380, 129135.
  • 66
    Marrus, S. B., H. Zeng and M. Rosbash (1996) Effect of constant light and circadian entrainment of perS flies: evidence for light mediated delay of the negative feedback loop in Drosophila. EMBO J. 15, 68776886.
  • 67
    Foster, K. W., J. Saranak, N. Patel, G. Zarilli, M. Okabe and T. Kline (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eucaryote Chlamydomonas. Nature 311, 756759.
  • 68
    Harz, H. and P. Hegemann (1991) Rhodopsin-regulated calcium currents in Chlamydomonas. Nature 351, 489491.
  • 69
    Johnson, C. H., T. Kondo and J. W. Hastings (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW 15 strain of Chlamydomonas. II Illuminated cells. Plant Physiol. 97, 11221129.
  • 70
    Kondo, T., C. H. Johnson and J. W. Hastings (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. I: cells in darkness. Plant Physiol. 95, 197205.
  • 71
    Roenneberg, T. (1996) The complex circadian system of Go-nyaulax polyedra. Physiol. Plant. 96, 733737.
  • 72
    Roenneberg, T. and J. Rehman (1996) Nitrate, a nonphotic signal for the circadian system. FASEB J. 10, 14431447.
  • 73
    Lythgoe, J. N. (1979) The Ecology of Vision. Clarendon Press, Oxford .
  • 74
    Hastings, J. W. and B. M. Sweeney (1960) The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra. J. Gen. Physiol. 43, 697706.
  • 75
    Johnson, C. H. and J. W. Hastings (1989) Circadian photo-transduction: phase resetting and frequency of the circadian clock of Gonyaulax cells in red light. J. Biol. Rhythms 4, 417437.
  • 76
    Roenneberg, T. and W. Taylor (1994) Light induced phase responses in Gonyaulax are drastically altered by creatine. J. Biol. Rhythms 9, 112.
  • 77
    Roenneberg, T. and J. W. Hastings (1988) Two photoreceptors influence the circadian clock of a unicellular alga. Naturwis-senschaften 75, 206207.
  • 78
    Daan, S. and C. S. Pittendrigh (1976) A functional analysis of circadian pacemakers in nocturnal rodents. III. Heavy water and constant light: homeostasis of frequency J. Comp. Physiol. A 106, 267290.
  • 79
    Roenneberg, T. and T.-S. Deng (1997) Photobiology of the Gonyaulax circadian system I: Different phase response curves for red and blue light. Planta 202, 494501.
  • 80
    Roenneberg, T., H. Nakamura and J. W. Hastings (1988) Creatine accelerates the circadian clock in a unicellular alga. Nature 334, 432434.
  • 81
    Roenneberg, T. (1994) The Gonyaulax circadian system: evidence for two input pathways and two oscillators. In Evolution of Circadian Clock (Edited by T.Hiroshige and K.-I.Honma), pp. 320. Hokkaido University Press, Sapporo .
  • 82
    Deng, T.-S. and T. Roenneberg (1997) Photobiology of the Gonyaulax circadian system II: allopurinol inhibits blue light effects. Planta. 202, 502509.
  • 83
    Comolli, J., W. Taylor and J. W. Hastings (1994) An inhibitor of protein phosphorylation stops the circadian oscillator and blocks light-induced phase shifting in Gonyaulax polyedra. J. Biol. Rhythms 9, 1326.
  • 84
    Roenneberg, T., H. Nakamura, L. D. I. Cranmer, Y. Kishi and J. W. Hastings (1991) Gonyaulin: a novel endogenous period-shortening substance controlling the circadian clock of a unicellular alga. Experientia 47, 103106.
  • 85
    Roenneberg, T. and D. Morse (1993) Two circadian oscillators in one cell. Nature 362, 362364.
  • 86
    Roenneberg, T. and J. W. Hastings (1993) Cell movement and pattern formation in Gonyaulax polyedra. In Oscillations and Morphogenesis (Edited by L.Rensing), pp. 399412. Marcel Dekker, New York .
  • 87
    Roenneberg, T., M. Merrow and B. Eisensamer (1997) Cellular mechanisms of circadian systems. Proc. Germ. Zool. Soc. (In press).
  • 88
    Morse, D., J. W. Hastings and T. Roenneberg (1994) Different phase responses of two circadian oscillators in Gonyaulax. J. Biol. Rhythms 9, 263274.
  • 89
    Nelson, R. J. and I. Zucker (1981) Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp. Biochem. Physiol. A 69, 145148.
  • 90
    Foster, R. G., I. Provencio, D. Hudson, S. Fiske, W. De Grip and M. Menaker (1991) Circadian photoreception in the reti-nally degenerate mouse (rd/rd). J. Comp. Physiol A 169, 3950.
  • 91
    Vigh-Teichmann, I. and B. Vigh (1992) Immunocytochemistry and calcium cytochemistry of the mammalian pineal organ: a comparison with retina and submammalian pineal organs. Mi-crosc. Res. Tech. 21, 227241.
  • 92
    Foster, R. G., A. M. Timmers, J. J. Schalken and W. J. DeGrip (1989) A comparison of some photoreceptor characteristics in the pineal and retina: II. The Djungarian hamster (Phodopus sungorus). J. Comp. Physiol A 165, 565572.
  • 93
    Araki, M. and S. Taketani (1992) A PCR analysis of rhodopsin gene transcription in rat pineal photoreceptor differentiation. Dev. Brain Res. 69, 149152.
  • 94
    Foster, R. G., J. J. Schalken, A. M. Timmers and W. J. DeGrip (1989) A comparison of some photoreceptor characteristics in the pineal and retina: I. The Japanese quail (Coturnix coturnix). J. Comp. Physiol A 165, 553563.
  • 95
    Provencio, I. and R. G. Foster (1993) Vitamin A2-based pho-topigments within the pineal gland of a fully terrestrial vertebrate. Neurosci. Lett. 155, 223226.
  • 96
    Tsin, A. T. C., T. S. Philips and R. J. Reiter (1989) An evaluation on the level of retinoids in the bovine pineal body. Adv. Pineal Res. 3, 147150.
  • 97
    Korf, H.-W., C. Kramm and W. J. DeGrip (1991) Further analysis of photoreceptor-specific proteins in the rodent pineal organ and retina. Adv. Pineal Res. 5, 115122.
  • 98
    Provencio, I., S. Wong, A. Lederman, S. M. Argamaso and R. G. Foster (1994) Visual and circadian responses to light in aged retinally degenerate mice. Vision Res. 34, 17991806.
  • 99
    Kornhauser, J. M., D. E. Nelson, K. E. Mayo and J. S. Taka-hashi (1990) Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5, 127134.
  • 100
    Rusak, B., H. A. Robertson, W. Wisden and S. P. Hunt (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248, 12371240.
  • 101
    Colwell, C. S. and R. G. Foster (1992) Photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse. J. Comp. Neurol. 324, 135142.
  • 102
    McCall, M. A., R. G. Gregg, K. Merriman, N. S. Goto, N. S. Peachey and L. R. Stanford (1996) Morphological and physiological consequences of the selective elimination of rod photoreceptors in transgenic mice. Exp. Eye Res. 63, 3550.
  • 103
    Foster, R. G., A. Froehlich, S. M. Argamaso-Hernan and M. A. McCall (1995) Rodless transgenic mice show increased circadian responses to light. Invest. Ophthalmol. & Visual Sci. 36, S422.
  • 104
    Takahashi, J. S., P. J. DeCoursey, L. Bauman and M. Menaker (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308, 186188.
  • 105
    Jacobs, G. H., J. Neitz and J. F. Deegan (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655656.
  • 106
    Calderone, J. B. and G. H. Jacobs (1995) Photopigments of Photochemistry and Photobiology, 1997, 66(5) 561 two types of hamsters. Invest. Ophthalmol. & Visual Sci. 36, S276.
  • 107
    Provencio, I. and R. G. Foster (1995) Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics. Brain Res. 694, 183190.
  • 108
    Foster, R. G., S. Argamaso, S. Coleman, C. S. Colwell, A. Lederman and I. Provencio (1993) Photoreceptors regulating circadian behavior: a mouse model. J. Biol. Rhythms 8, 1724.
  • 109
    Wang, Y., J. P. Macke, D. J. Zack, B. Klaunberg, J. Gearhart and J. Nathans (1992) A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429440.
  • 110
    Freedman, M. S., M. von Schantz, B. G. Soni and R. G. Foster (1997) Molecular dissection of the coneless transgenic mouse retina. Invest. Ophthalmol. & Visual Sci. 38, S322.
  • 111
    Soni, B. G. and R. G. Foster (1997) A novel and ancient vertebrate opsin. FEBS Lett. 406, 279283.
  • 112
    Czeisler, C. A., T. L. Shanahan, E. B. Kerman, H. Martens, D. J. Brotman, J. S. Emens, T. Klein and J. F. Rizzo (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N. Engl. J. Med. 332, 655.
  • 113
    Nevo, E., R. Guttman, M. Haber and E. Erez (1982) Activity patterns of evolving mole rats. J. Mammal 63, 453463.
  • 114
    Haim, A. G., H. Heth, H. Pratt and E. Nevo (1983) Photoperiodic effects on thermoregulation in a “blind” subterranean mammal. J. Exp. Biol. 107, 5964.
  • 115
    Pevet, P., H. Heth, A. G. Haim and E. Nevo (1984) Photope-riod perception in the blind mole-rat (Spalax ehrenbergi). Involvement of the harderian gland, atrophied eyes and melatonin. J. Exp. Zool. 232, 4150.
  • 116
    Rado, R. H., H. Gev and J. Terkel (1988) The role of light in entraining mole rats circadian rhythms. Is. J. Zool. 35, 105106.
  • 117
    Rado, R. and J. Terkel (1989) Circadian activity of the blind mole rats, Spalax ehrenbergi monitored by radio-telemetry in seminatural and natural conditions. In Environmental Quality and Ecosystem Stability (Edited by E.Spanier, Y.Steinberger and M.Luria), pp. 391400. ISEEQS, Jerusalem .
  • 118
    Nevo, E., G. Heth and H. Pratt (1991) Seismic communication in a blind subterranean mammal-a major somatosensory mechanism in adaptive evolution underground. Proc. Natl. Acad. Sci. USA 88, 12561260.
  • 119
    Moore, R. Y., J. C. Speh and J. P. Card (1995) The retino-hypothalamic tract originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol. 352, 351366.
  • 120
    Provencio, I., H. M. Cooper and R. G. Foster (1997) Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment. J. Comp. Neurol. (In press).
  • 121
    Cooper, H. M., A. Tessonneaud, A. Caldani, A. Locatelli, S. Richard and M. C. Viguier-Martinez (1993) Morphology and distribution of retinal ganglion cells (RGC) projecting to the suprachiasmatic nucleus in the sheep. Soc. Neurosci. Abstr. 19, 701.
  • 122
    Schantz, M. v., S. Argamaso-Hernan, A. Szel and R. G. Foster (1997) Photopigments and photoentrainment in the Syrian golden hamster. Brain Res. (In press).
  • 123
    Wallraff, H. G. (1981) Clock-controlled orientation in space. In Handbook of Behavioural Neurobiology: Biological Rhythms (Edited by J.Aschoff), pp. 299309. Plenum Press, New York and London .